0
TECHNICAL PAPERS

An Analysis of Crack Propagation Paths at Implant/ Bone-Cement Interfaces

[+] Author and Article Information
B. A. O. McCormack

Bioengineering Research Centre, Department of Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland

P. J. Prendergast

Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland

J Biomech Eng 118(4), 579-585 (Nov 01, 1996) (7 pages) doi:10.1115/1.2796047 History: Received September 01, 1994; Revised September 13, 1995; Online October 30, 2007

Abstract

Clinical follow-up studies of joint replacements indicate that debonding of the implant from the bone-cement is the first mechanical event of loosening. Debonding can occur due to unsustainable interface stresses, usually initiated from defects along the interface. Such defects, or flaws, are inevitably introduced during the surgical procedure and from polymerisation shrinkage. Debonding leads to increased stresses within the cement mantle. This study is concerned with modelling the propagation of a crack from the debonded region on the cement/implant interface under physiological loading conditions for different implant materials and prosthesis designs. Using the theory of linear fracture mechanics for bimaterial interfaces, the behaviour of a crack along an interface between implant materials, under various states of stress, is studied. Specifically, a model is developed to determine the conditions under which a debonded region, along an otherwise bonded interface, will either propagate along the interface or will “kink” into the cement mantle. The relationship between the stress state and the crack propagation direction at the interface is then predicted for different interface materials, and it is shown that different crack directions exist for different materials, even when the stress state is the same. Furthermore, the crack behavior is shown to be dependent on the ratio of normal stress to shear stress at the interface and this may be important for the design optimisation of load-bearing cemented prostheses. Finally, the likelihood that an interface crack will propagate into the cement mantle is explored using a suitable fracture criterion.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In