0
TECHNICAL PAPERS

Motion of Red Blood Cells in Capillaries With Variable Cross-Sections

[+] Author and Article Information
T. W. Secomb, R. Hsu

Department of Physiology, University of Arizona, Tucson, AZ 85724

J Biomech Eng 118(4), 538-544 (Nov 01, 1996) (7 pages) doi:10.1115/1.2796041 History: Received June 08, 1995; Revised February 01, 1996; Online October 30, 2007

Abstract

Red blood cells undergo continual deformation when traversing microvessels in living tissues. This may contribute to higher resistance to blood flow observed in living microvessels, compared with that in corresponding uniform glass tubes. We use a theoretical model to simulate single-file motion of red cells though capillaries with variable cross-sections, assuming axisymmetric geometry. Effects of cell membrane shear viscosity and elasticity are included, but bending resistance is neglected. Lubrication theory is used to describe the flow of surrounding plasma. When a red cell encounters a region of capillary narrowing, additional energy is dissipated, due to membrane viscosity, and due to narrowing of the lubrication layer, increasing the flow resistance. Predicted resistance to cell motion in a vessel with periodic constrictions (diameter varying between 5 μm and 4 μm) is roughly twice that in a uniform vessel with diameter 4.5 μm. Effects of transient red cell deformations may contribute significantly to blood flow resistance in living microvessels.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In