Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions

[+] Author and Article Information
Xiaoyi He, David N. Ku

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

J Biomech Eng 118(1), 74-82 (Feb 01, 1996) (9 pages) doi:10.1115/1.2795948 History: Received March 04, 1994; Revised December 16, 1994; Online October 30, 2007


The localization of atherosclerosis in the coronary arteries may be governed by local hemodynamic features. In this study, the pulsatile hemodynamics of the left coronary artery bifurcation was numerically simulated using the spectral element method for realistic in vivo anatomic and physiologic conditions. The velocity profiles were found to be skewed in both the left anterior descending and the circumflex coronary arteries. Velocity skewing arose from the bifurcation as well as from the curvature of the artery over the myocardial surface. Arterial wall shear stress was significantly lower in the bifurcation region, including the side walls. The greatest oscillatory behavior was localized to the outer wall of the circumflex artery. The time-averaged mean wall shear stress varied from about 3 to 98 dynes/cm2 in the left coronary artery system. The highly localized distribution of low and oscillatory shear stress along the walls strongly correlates with the focal locations of atheroma in the human left coronary artery.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In