0
TECHNICAL PAPERS

A Model for Stress-Induced Growth in the Developing Heart

[+] Author and Article Information
I-En Lin, L. A. Taber

Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627

J Biomech Eng 117(3), 343-349 (Aug 01, 1995) (7 pages) doi:10.1115/1.2794190 History: Received February 10, 1994; Revised July 26, 1994; Online October 30, 2007

Abstract

Mechanical loads affect growth and morphogenesis in the developing heart. Using a theoretical model, we studied stress-modulated growth in the embryonic chick ventricle during stages 21–29 (4–6 days of a 21-day incubation period). The model is a thick-walled, compressible, pseudoelastic cylinder, with finite volumetric growth included by letting the rate of change of the local zero-stress configuration depend linearly on the Cauchy stresses. After investigating the fundamental behavior of the model, we used it to study global and local growth in the primitive ventricle due to normal and abnormal cavity pressures. With end-diastolic pressure taken as the growth-modulating stimulus, correlating theoretical and available experimental results yielded the coefficients of the growth law, which was assumed to be independent of time and loading conditions. For both normal and elevated pressures, the predicted changes in radius and wall volume during development were similar to experimental measurements. In addition, the residual stress generated by differential growth agreed with experimental data. These results suggest that wall stress may be a biomechanical factor that regulates growth in the embryonic heart.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In