0
RESEARCH PAPERS

Formulation of a Statistical Model of Heat Transfer in Perfused Tissue

[+] Author and Article Information
J. W. Baish

Department of Mechanical Engineering, Bucknell University, Lewisburg, PA 17837

J Biomech Eng 116(4), 521-527 (Nov 01, 1994) (7 pages) doi:10.1115/1.2895804 History: Received December 06, 1992; Revised January 10, 1994; Online March 17, 2008

Abstract

A new model of steady-state heat transport in perfused tissue is presented. The key elements of the model are as follows: (1) a physiologically-based algorithm for simulating the geometry of a realistic vascular tree containing all thermally significant vessels in a tissue; (2) a means of solving the conjugate heat transfer problem of convection by the blood coupled to three-dimensional conduction in the extravascular tissue, and (3) a statistical interpretation of the calculated temperature field. This formulation is radically different from the widely used Pennes and Weinbaum-Jiji bio-heat transfer equations that predict a loosely defined local average tissue temperature from a local perfusion rate and a minimal representation of the vascular geometry. Instead, a probability density function for the tissue temperature is predicted, which carries information on the most probable temperature at a point and uncertainty in that temperature due to the proximity of thermally significant blood vessels. A sample implementation illustrates the dependence of the temperature distribution on the flow rate of the blood and the vascular geometry. The results show that the Pennes formulation of the bio-heat transfer equation accurately predicts the mean tissue temperature except when the arteries and veins are in closely spaced pairs. The model is useful for fundamental studies of tissue heat transport, and should extend readily to other forms of tissue transport including oxygen, nutrient, and drug transport.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In