0
RESEARCH PAPERS

A Method for Real-Time In Vitro Observation of Cavitation on Prosthetic Heart Valves

[+] Author and Article Information
Conrad M. Zapanta, Edward G. Liszka, Theodore C. Lamson, David R. Stinebring, Steve Deutsch, David B. Geselowitz, John M. Tarbell

The Bioengineering Program and Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802

J Biomech Eng 116(4), 460-468 (Nov 01, 1994) (9 pages) doi:10.1115/1.2895797 History: Received April 24, 1993; Revised November 16, 1993; Online March 17, 2008

Abstract

A method for real-time in vitro observation of cavitation on a prosthetic heart valve has been developed. Cavitation of four blood analog fluids (distilled water, aqueous glycerin, aqueous polyacrylamide, and aqueous xanthan gum) has been documented for a Medtronic/Hall™ prosthetic heart valve. This method employed a Penn State Electrical Ventricular Assist Device in a mock circulatory loop that was operated in a partial filling mode associated with reduced atrial filling pressure. The observations were made on a valve that was located in the mitral position, with the cavitation occurring on the inlet side after valve closure on every cycle. Stroboscopic videography was used to document the cavity life cycle. Bubble cavitation was observed on the valve occluder face. Vortex cavitation was observed at two locations in the vicinity of the valve occluder and housing. For each fluid, cavity growth and collapse occurred in less than one millisecond, which provides strong evidence that the cavitation is vaporous rather than gaseous. The cavity duration time was found to decrease with increasing atrial pressure at constant aortic pressure and beat rate. The area of cavitation was found to decrease with increasing delay time at a constant aortic pressure, atrial pressure, and beat rate. Cavitation was found to occur in each of the fluids, with the most cavitation seen in the Newtonian fluids (distilled water and aqueous glycerin).

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In