0
RESEARCH PAPERS

Three-Dimensional Simulation of Blood Flow in an Abdominal Aortic Aneurysm—Steady and Unsteady Flow Cases

[+] Author and Article Information
Tad W. Taylor, Takami Yamaguchi

Department of Bio-Medical Engineering, School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03 Japan

J Biomech Eng 116(1), 89-97 (Feb 01, 1994) (9 pages) doi:10.1115/1.2895709 History: Received April 29, 1992; Revised December 11, 1992; Online March 17, 2008

Abstract

Atherosclerosis and atherosclerotic aneurysms can occur in the abdominal aorta. Steady and unsteady three-dimensional flow cases were simulated in abdominal aortic aneurysm using a flow simulation package on a graphics workstation. In the steady case, three aneurysm models of 8.0 cm length were simulated using Reynolds numbers of 350 and 700. In the unsteady case, blood flow in a single asymmetric aneurysm of 8.0 cm length was simulated at Reynolds numbers of 350 and 700 and 1400. In the aneurysm center, two symmetric vortices were formed, and flow separation started at the aneurysm inlet. In the unsteady flow case, the main vortex appeared and disappeared and changed position in the unsteady flow case and induced vortices were formed. Although the centerline view shows the vortices change position with time, cross-sectional views show that two symmetric vortices are present or partially formed throughout the entire flow cycle. Regions of high pressure were observed at the aneurysm exit caused by the symmetric vortices that were formed, implying that this high-pressure region could be an area where rupture is most likely. In the unsteady case, regions of maximum pressure moved depending on the flow cycle time; at peak flow, local pressure maximums were observed at the distal aneurysm; these oscillated, tending to put an additional strain on the distal portion of the aneurysm. The shear stress was low in the aneurysm portion of the vessel, and local maximum values were observed at the distal aneurysm constriction.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In