Computing Body Segment Trajectories in the Hybrid III Dummy Using Linear Accelerometer Data

[+] Author and Article Information
Rex T. Shea, David C. Viano

Automotive Safety and Health Research, GM NAO R&D Center, 30500 Mound Road, Warren, MI 48090-9055

J Biomech Eng 116(1), 37-43 (Feb 01, 1994) (7 pages) doi:10.1115/1.2895702 History: Received November 23, 1990; Revised May 04, 1993; Online March 17, 2008


An analytical method was developed and tested using several mini-sled and Hyge sled tests to calculate the planar trajectory of a Hybrid III dummy head. Aimed at expediting the Hybrid III test analyses, it may provide an opportunity for cost savings through reduced hardware and manpower on film analyses. Transformation from the moving coordinate to the laboratory coordinate is based on the angular positions integrated from the derived angular accelerations. Gravitational correction of the linear accelerometers was found to be insignificant. The computed head trajectories were compared to the ones obtained from the high speed film images. Accuracy of the calculated head trajectory relies heavily on the accuracy of the computed angular acceleration. Strain-gaged accelerometers are not dependable at all times during an impact and an ill-behaved signal for a very short period may create a significant drift in computed displacement due to double integrations. Accuracy of the currently available accelerometers is not high enough for an angular displacement calculation. A new generation of accelerometers with higher accuracy, or an angular velocity sensor may provide more accurate angular displacement for trajectory analyses. The redundancy of the in-line accelerations helps improve the isolation of erroneous outputs and improve accuracy of the procedure.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In