0
RESEARCH PAPERS

Nonhomogeneous Ventricular Wall Strain: Analysis of Errors and Accuracy

[+] Author and Article Information
Lewis K. Waldman

Department of Medicine (Cardiology), University of California, San Diego, La Jolla, CA 92093-0613

Andrew D. McCulloch

Department of Applied Mechanics and Engineering Sciences (Bioengineering), University of California, San Diego, La Jolla, CA 92093-0613

J Biomech Eng 115(4B), 497-502 (Nov 01, 1993) (6 pages) doi:10.1115/1.2895530 History: Revised July 11, 1993; Online March 17, 2008

Abstract

Nonhomogeneous distributions of strains are simulated and utilized to determine two potential errors in the measurement of cardiac strains. First, the error associated with the use of single-plane imaging of myocardial markers is examined. We found that this error ranges from small to large values depending on the assumed variation in stretch. If variations in stretch are not accompanied by substantial regional changes in ventricular radius, the associated error tends to be quite small. However, if the nonuniform stretch field is a result of substantial variations in local curvature from their reference values, large errors in stretch and strain occur. For canine hearts with circumferential radii of 2 to 4 cm, these errors in stretch may be as great as 30 percent or more. Moreover, gradients in stretch may be over- or underestimated by as much as 100 percent. In the second part of this analysis, the influence of random measurement errors in the coordinate positions of markers on strains computed from them is studied. Arrays of markers covering about 16 cm2 of ventricular epicardium are assumed and nonuniform stretches imposed. The reference and deformed positions of the markers are perturbed with Gaussian noise with a standard deviation of 0.1 mm, and then strains are computed using either homogeneous strain theory or a nonhomogeneous finite element method. For the strain distributions prescribed, it is found that the finite element method reduces the error resulting from noise by about 50 percent over most of the region. Accurate measurements of cardiac strain distributions are needed for correlation with and validation of realistic three-dimensional stress analyses of the heart. Moreover, with the advent of increasingly effective noninvasive methods to measure cardiac deformation such as magnetic resonance imaging, the use of nonhomogeneous strain analysis to determine more accurate strain distributions has increasing clinical significance.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In