0
RESEARCH PAPERS

Finite Element Models for Arterial Wall Mechanics

[+] Author and Article Information
B. R. Simon, M. V. Kaufmann, M. A. McAfee

Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721

A. L. Baldwin

Department of Physiology, The University of Arizona, Tucson, AZ 85721

J Biomech Eng 115(4B), 489-496 (Nov 01, 1993) (8 pages) doi:10.1115/1.2895529 History: Revised July 26, 1993; Online March 17, 2008

Abstract

Arterial wall mechanics has been studied for nearly 200 years. This subject is of importance if we are to gain a fundamental understanding of this complex biological structure, as well as information needed to design prosthetics. Biomechanical arterial models continue to play an important role in the study of atherosclerosis, a disease of the arterial wall that is the chief cause of mortality and morbidity in the United States and the Western World. Over the past 20 years, the finite element model (FEM) has been used in a variety of ways to simulate the structural response of large arteries. Our purpose is to summarize the uses of FEMs in arterial mechanics. We will also indicate directions for future research in this area. A specialized FEM was described in the literature for the study of transport in the arterial wall, however the convection was not directly linked to arterial wall mechanics. In this paper special attention will be given to the development of FEMs based on the poroelastic view of arterial tissues which couple wall deformation, free tissue fluid motion, and associated transport phenomena in the arterial wall. In the future such models should provide fundamental quantitative information relating arterial wall mechanics and transport which may lead to a better understanding of both normal arterial physiology and atherogenesis.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In