0
RESEARCH PAPERS

Remodeling of the Constitutive Equation While a Blood Vessel Remodels Itself Under Stress

[+] Author and Article Information
Y. C. Fung, S. Q. Liu, J. B. Zhou

Department of AMES/Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412

J Biomech Eng 115(4B), 453-459 (Nov 01, 1993) (7 pages) doi:10.1115/1.2895523 History: Revised May 18, 1993; Online March 17, 2008

Abstract

Changes in the mechanical properties of a blood vessel when it remodels itself under stress are reviewed. One of the recent findings about blood vessels is the rapidity of tissue remodeling when the blood pressure is changed. When the tissue structure and material composition remodel, the zero-stress state of the vessel changes. The mechanical properties change also in the remodeling process. If the elastic behavior is expressed in terms of a pseudo-elastic strain-energy function, then the constants in the function will change in the course of the remodeling. With all these changes taking place, the scope of constitutive equations broadens: it should now include a mass-and-structure growth-stress relationship as well as a stress-strain-relationship. To obtain the mass-and-structure growth-stress relationship, one must be able to determine the mechanical properties of the different layers of the vessel wall, as well as the chemical composition and morphology. For the blood vessels, new methods of mechanical testing must be introduced. A key thought is to use bending of the blood vessel wall. By bending, different layers of the vessel wall are subjected to different stresses, leading to equations that can be used to solve the inverse problem of determining the stress-strain law from measured stress and strain. In vitro and in vivo experiments and theoretical prospectives are presented.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In