Laser Anemometry Measurements of Steady Flow Past Aortic Valve Prostheses

[+] Author and Article Information
Y. T. Chew, H. T. Low, C. N. Lee, S. S. Kwa

Department of Mechanical & Production Engineering, National University of Singapore, Singapore 0511

J Biomech Eng 115(3), 290-298 (Aug 01, 1993) (9 pages) doi:10.1115/1.2895489 History: Received February 22, 1992; Revised May 04, 1992; Online March 17, 2008


An experimental investigation was conducted in steady flow to examine the fluid dynamics performance of three prosthetic heart valves of 27 mm diameter: Starr-Edwards caged ball valve, Bjork-Shiley convexo-concave tilting disk valve, and St. Vincent tilting disk valve. It was found that the pressure loss across the St. Vincent valve is the least and is, in general, about 70 percent of that of the Starr-Edwards valve. The pressure recovery is completed about 4 diameters downstream. The velocity profiles for the ball valve reveal a large single reversed flow region behind the occluder while those for the tilting disks valves reveal two reversed flow regions immediately behind the occluders. Small regions of stasis are also found near the wall in the minor opening of Bjork-Shiley valve and in the major opening of St. Vincent valve. The maximum wall shear stresses of the three valves at a flow rate of 30 l/min are in the range 30–50 dyn/cm2 which can cause hemolysis of attached red blood cells. The corresponding maximum Reynolds normal stresses are in the range of 1600–3100 dyn/cm2 . The Reynolds normal stresses decay quickly and return approximately to the upstream undisturbed level at about 4 diameters downstream while the wall shear stresses decay at a slower rate. The maximum Reynolds normal stresses occur at about 1 diameter downstream while the maximum wall shear stress is at about 2 diameters downstream. In general, the St. Vincent valve has better performance. A method to compensate for refractive index variations and curvature effect of the sinus region of the aorta root using laser doppler anemometer measurements is also proposed.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In