0
TECHNICAL PAPERS

A Linear Material Model for Fiber-Induced Anisotropy of the Anulus Fibrosus

[+] Author and Article Information
Dawn M. Elliott, Lori A. Setton

Department of Biomedical Engineering, Duke University, Durham, NC 27708

J Biomech Eng 122(2), 173-179 (Oct 18, 1999) (7 pages) doi:10.1115/1.429639 History: Received September 13, 1999; Revised October 18, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Weidenbaum, M., Iatridis, J., Setton, L. A., Foster, R. J., and Mow, V. C., 1996, “Mechanical Behavior of the Intervertebral Disc and the Effects of Degeneration,” in: Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein and S. L. Gordon, eds., American Academy of Orthopaedic Surgeons, pp. 557–582.
Goel, V. K., 1996, “Biomechanics of Disc Herniation and Related Issues,” in: Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein and S. L. Gordon, eds., American Academy of Orthopaedic Surgeons, pp. 289–304.
Bayliss, M. T., and Johnstone, B., 1992, “Biochemistry of the Intervertebral Disc,” in: The Lumbar Spine and Back Pain, M. I. V. Jayson and A. S. J. Dixon, eds., Churchill Liningstone, pp. 111–131.
Marchand,  F., and Ahmed,  A. M., 1990, “Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosus,” Spine, 15, No. 5, pp. 402–410.
Cassidy,  J. J., Hiltner,  A., and Baer,  E., 1989, “Hierarchical Structure of the Intervertebral Disc,” Connect. Tissue Res., 23, pp. 75–88.
Horton,  W. G., 1958, “Further Observations on the Elastic Mechanism of the Intervertebral Disc,” J. Bone Jt. Surg., 40B, No. 3, pp. 552–557.
Hsu,  E. W., and Setton,  L. A., 1999, “Diffusion Tensor Microscopy of the Intervertebral Disc Annulus Fibrosus,” Magn. Reson. Med., 41, No. 5, pp. 992–999.
Acaroglu,  E. R., Iatridis,  J. C., Setton,  L. A., Foster,  R. J., Mow,  V. C. and Weidenbaum,  M., 1995, “Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus,” Spine, 20, No. 24, pp. 2690–2701.
Ebara,  S., Iatridis,  J. C., Setton,  L. A., Foster,  R. J., Mow,  V. C., and Weidenbaum,  M., 1996, “Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus,” Spine, 21, No. 4, pp. 452–461.
Galante,  J., 1967, “Tensile Properties of the Human Lumbar Annulus Fibrosus,” Acta Orthop. Scand. Suppl., 100, pp. 1–91.
Wu,  H. C., and Yao,  R. F., 1976, “Mechanical Behavior of the Human Annulus Fibrosus,” J. Biomech., 9, pp. 1–7.
Adams,  M. A., and Green,  T. P., 1993, “Tensile Properties of the Annulus Fibrosus,” Eur. Spine J., 2, pp. 203–208.
Kasra,  M., Pranianpour,  M., Wang,  J. L., Shirazi-Adl,  A., and Grynpas,  M. D., 1997, “Effect of Strain Rate on Failure Behavior of the Anulus Fibrosus in Tension,” ASME Adv. Bioeng., BED-36, pp. 205–206.
Fujita,  Y., Duncan,  N. A., and Lotz,  J., 1997, “Radial Tensile Properties of the Lumbar Anulus Fibrosus are Site and Degeneration Dependent,” J. Orthop. Res., 15, pp. 814–819.
Marchand,  F., and Ahmed,  A. M., 1989, “Mechanical Properties and Failure Mechanisms of the Lumbar Disc Annulus,” Trans. Orthop. Res. Soc., 14, p. 355.
Nachemson,  A., 1963, “Influence of Spinal Movements on the Lumbar Intradiscal Pressure and on the Tensile Stresses in the Annulus Fibrosus,” Acta Orthop. Scand., 33, pp. 183–207.
Stokes,  I. A. F., 1987, “Surface Strain on Human Intervertebral Discs,” J. Orthop. Res., 5, pp. 348–355.
Goel,  V. K., Kim,  Y. E., Lim,  T. H., and Weinstein,  J. N., 1988, “Analytical Investigation of the Mechanics of Spinal Instrumentation,” Spine, 13, No. 9, pp. 1003–1011.
Goel,  V. K., Monroe,  B. T., Gilbertson,  L. G., and Brinckmann,  P., 1995, “Interlaminar Shear Stresses and Laminae Separation in a Disc; Finite Element Analysis of the L3–L4 Motion Segment Subjected to Axial Compressive Loads,” Spine, 20, No. 6, pp. 689–698.
Shirazi-Adl,  S. A., Shrivastava,  S. C., and Ahmed,  A. M., 1984, “Stress Analysis of the Lumbar Disc-Body Unit in Compression: a 3D Nonlinear Finite Element Study,” Spine, 9, No. 2, pp. 120–134.
Shirazi-Adl,  A., 1994, “Nonlinear Stress Analysis of the Whole Lumbar Spine in Torsion—Mechanics of Facet Articulation,” J. Biomech., 27, No. 3, pp. 289–299.
Ueno,  K., and Liu,  Y. K., 1987, “Three-Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Tension,” ASME J. Biomech. Eng., 109, pp. 200–209.
Natarajan,  R. N., Ke,  J. H., and Andersson,  G. B. J., 1994, “A Model to Study the Disc Degeneration Process,” Spine, 19, No. 3, pp. 259–265.
Belytschko,  T., Kulak,  R. F., and Schultz,  A. B., 1974, “Finite Element Stress Analysis of an Intervertebral Disc,” J. Biomech., 7, pp. 277–285.
Spilker,  R. L., Jakobs,  D. M., and Schultz,  A. B., 1986, “Material Constants for a Finite Element Model of the Intervertebral Disc With a Fiber Composite Annulus,” ASME J. Biomech. Eng., 108, pp. 1–11.
Argoubi,  M., and Shirazi-Adl,  A., 1996, “Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression,” J. Biomech., 29, No. 10, pp. 1331–1339.
Duncan,  N. A., Ashford,  F. A., and Lotz,  J. C., 1996, “The Effect of Strain Rate on the Axial Stress–Strain Response of the Human Annulus Fibrosus in Tension and Compression: Experiment and Poroelastic Finite Element Predictions,” ASME Adv. Bioeng., 33, pp. 401–402.
Laible,  J. P., Pflaster,  D. S., Krag,  M. H., Simon,  B. R., and Haugh,  L. D., 1993, “Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc,” Spine, 18, No. 5, pp. 659–670.
Simon,  B. R., Wu,  J. S. S., Carlton,  M. W., Evans,  J. H., and Kazarian,  L. E., 1985, “Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disc,” ASME J. Biomech. Eng., 107, pp. 327–335.
Spencer, A. J. M., 1972, Deformations of Fibre-Reinforced Materials, Oxford University Press.
Spencer, A. J. M., 1984, “Constitutive Theory for Strongly Anisotropic Solids,” in: Continuum Theory of the Mechanics of Fibre-Reinforced Composites, A. J. M. Spencer, ed., Springer-Verlag, pp. 1–32.
Best,  B. A., Guilak,  F., Setton,  L. A., Zhu,  W., Saed-Nejad,  F., Ratcliffe,  A., Weidenbaum,  M., and Mow,  V. C., 1994, “Compressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition,” Spine, 19, No. 2, pp. 212–221.
Spencer, A. J. M., 1971, “Theory of Invariants,” in: Continuum Physics, A. C. Eringen, ed., Academic Press, pp. 239–353.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press.
Fujita,  Y., Duncan,  N. A., and Lotz,  J. C., 1996, “Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain,” Trans. Orthop. Res. Soc., 21, p. 271.
Iatridis,  J. C., Kumar,  S., Krishnan,  L., Rawlins,  B. A., Weidenbaum,  M., and Mow,  V. C., 1996, “Shear Mechanical Behavior of the Human Lumbar Annulus Fibrosus and the Effects of Degeneration,” ASME Adv. Bioeng., BED-33, pp. 149–150.
Skaggs,  D. L., Weidenbaum,  M., Iatridis,  J. C., Ratcliffe,  A., and Mow,  V. C., 1994, “Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus,” Spine, 19, No. 12, pp. 1310–1319.
Bovendeerd,  P. H. M., Arts,  T., Huyghe,  J. M., Van Campen,  D. H., and Reneman,  R. S., 1992, “Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: a Model Study,” J. Biomech., 25, No. 10, pp. 1129–1140.
Guccione,  J. M., McCulloch,  A. D., and Waldman,  L. K., 1991, “Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model,” ASME J. Biomech. Eng., 113, pp. 42–55.
Humphrey,  J. D., and Yin,  F. C. P., 1987, “New Constitutive Formulation for Characterizing the Mechanical Behavior of Soft Tissues,” Biophys. J., 52, pp. 563–570.
Humphrey,  J. D., Strumpf,  R. K., and Yin,  F. C. P., 1990, “Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form,” ASME J. Biomech. Eng., 112, pp. 333–339.
Taber,  L. A., 1991, “On a Nonlinear Theory for Muscle Shells: Part II—Application to the Beating Left Ventricle,” ASME J. Biomech. Eng., 113, pp. 63–71.
Puso,  M. A., and Weiss,  J. A., 1998, “Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation,” ASME J. Biomech. Eng., 120, pp. 62–70.
Drost,  M. R., Willems,  P., Snijders,  H., Huyghe,  J. M., Janssen,  J. D., and Huson,  A., 1995, “Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loading,” ASME J. Biomech. Eng., 117, pp. 390–396.
Iatridis,  J. C., Setton,  L. A., Foster,  R. J., Rawlins,  B. A., Weidenbaum,  M., and Mow,  V. C., 1998, “Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Annulus Fibrosus in Compression,” J. Biomech., 31, pp. 535–544.
Gu,  W. Y., Mao,  X. G., Foster,  R. J., Weidenbaum,  M., Mow,  V. C., and Rawlins,  B. A., 1999, “The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus, Influence of Age, Degeneration, Direction, and Water Content,” Spine, 24, pp. 2449–2455.
Seroussi,  R. E., Krag,  M. H., Muller,  D. L., and Pope,  M. H., 1989, “Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads,” J. Orthop. Res., 7, pp. 122–131.

Figures

Grahic Jump Location
Schematic of the intervertebral disc. Collagen fiber angles change with alternating lamellae in the anulus fibrosus. AF=anulus fibrosus, NP=nucleus pulposus. Unit vectors a and b denote orientation of collagen fiber populations in the x1−x2 plane.
Grahic Jump Location
Coordinate system used in model development. Unit vectors a and b denote orientation of collagen fiber populations in the x1−x2 plane. The fiber populations are oriented at an angle θ from the global coordinate system and at an angle 2ϕ from each other.
Grahic Jump Location
Model prediction for modulus in the x1 direction for changing fiber angle, ϕ. Data 1 from 8, data 2 from 9, and data 3 from 37.
Grahic Jump Location
Schematic of fiber populations for several orientations of fiber populations: (A) Physiologic representation of AF fiber populations was used to determine the material property set, θ=0 deg and ϕ=30 deg. (B) Fiber angle ϕ=60 deg for θ=0 deg; alternatively, may represent a coordinate rotation to θ=90 deg while maintaining a physiologic angle ϕ=30 deg. (C) For ϕ=90 deg, the fiber populations coincide and represent the case of transverse isotropy, with the material properties in the x1 direction being transverse to the fiber populations. (D) For ϕ=0 deg, the fiber populations coincide and represent transverse isotropy, with the material properties in x1 direction being in the fiber direction.
Grahic Jump Location
Model prediction for dilatation for a multiple lamella AF at ϕ=30 deg under uniaxial strain in the x1 direction (circumferential) and for a single lamella under uniaxial strain in the fiber direction
Grahic Jump Location
Model prediction for dilatation for a uniaxial strain of 0.1 in the x1 direction as a function of fiber angle, ϕ

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In