Surfactant Transport Over Airway Liquid Lining of Nonuniform Depth

[+] Author and Article Information
H. A. R. Williams, O. E. Jensen

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom

J Biomech Eng 122(2), 159-165 (Nov 18, 1999) (7 pages) doi:10.1115/1.429637 History: Received September 03, 1999; Revised November 18, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Notter,  R. H., and Wang,  Z., 1997, “Pulmonary Surfactant: Physical Chemistry, Physiology, and Replacement,” Rev. Chem. Eng., 13, pp. 1–118.
Halpern,  D., Jensen,  O. E., and Grotberg,  J. B., 1998, “A Theoretical Study of Surfactant and Liquid Delivery Into the Lung,” J. Appl. Physiol., 85, pp. 333–352.
Espinosa,  F. F., and Kamm,  R. D., 1999, “Bolus Dispersal Through the Lungs in Surfactant Replacement Therapy,” J. Appl. Physiol., 86, pp. 391–410.
Kharasch,  V. S., Sweeney,  T. D., Fredberg,  J., Lehr,  J., Damokosh,  A. I., Avery,  M. A., and Brain,  J. D., 1991, “Pulmonary Surfactant as a Vehicle for Intratracheal Delivery of Technetium Sulfur Colloid and Pentamidine in Hamster Lungs,” Am. Rev. Respir. Dis., 144, pp. 909–913.
Ueda,  T., Ikegami,  M., Rider,  E. D., and Jobe,  A. H., 1994, “Distribution of Surfactant and Ventilation in Surfactant-Treated Preterm Lambs,” J. Appl. Physiol., 76, pp. 45–55.
Jensen,  O. E., and Grotberg,  J. B., 1992, “Insoluble Surfactant Spreading on a Thin Viscous Film: Shock Evolution and Film Rupture,” J. Fluid Mech., 240, pp. 259–288.
Espinosa,  F. F., Shapiro,  A. H., Fredberg,  J. J., and Kamm,  R. D., 1993, “Spreading of a Small Surfactant Bolus on a Thin Film Lining an Airway,” J. Appl. Physiol., 75, pp. 2028–2039.
Yap,  D. Y. K., and Gaver,  D. P., 1998, “The Influence of Surfactant on Two-Phase Flow in a Flexible-Walled Channel Under Bulk Equilibrium Conditions,” Phys. Fluids, 10, pp. 1846–1863.
Halpern,  D., and Grotberg,  J. B., 1993, “Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure,” ASME J. Biomech. Eng., 115, pp. 271–277.
Otis,  D. R., Johnson,  M., Pedley,  T. J., and Kamm,  R. D., 1993, “Role of Pulmonary Surfactant in Airway Closure: a Computational Study,” J. Appl. Physiol., 75, pp. 1323–1333.
Grotberg,  J. B., 1994, “Pulmonary Flow and Transport Phenomena,” Annu. Rev. Fluid Mech., 26, pp. 529–571.
Lambert,  R. K., Codd,  S. L., Alley,  M. R., and Pack,  R. J., 1994, “Physical Determinants of Bronchial Mucosal Folding,” J. Appl. Physiol., 77, pp. 1206–1216.
Wiggs,  B. R., Hrousis,  C. A., Drazen,  J. M., and Kamm,  R. D., 1997, “On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” J. Appl. Physiol., 83, pp. 1814–1821.
Heil,  M., 1999, “Minimal Liquid Bridges in Non-axisymmetrically Buckled Elastic Tubes,” J. Fluid Mech., 380, pp. 309–337.
Heil,  M., 1999, “Airway Closure: Occluding Liquid Bridges in Strongly Buckled Elastic Tubes,” ASME J. Biomech. Eng., 121, pp. 487–493.
Hill,  M. J., Wilson,  T. A., and Lambert,  R. K., 1997, “Effects of Surface Tension and Intraluminal Fluid on Mechanics of Small Airways,” J. Appl. Physiol., 82, pp. 233–239.
Yager,  D., Butler,  J. P., Bastacky,  J., Israel,  E., Smith,  G., and Drazen,  J. M., 1989, “Amplification of Airway Constriction Due to Liquid Filling of Airway Interstices,” J. Appl. Physiol., 66, pp. 2873–2884.
Yager,  D., Cloutier,  T., Feldman,  H., Bastacky,  J., Drazen,  J. M., and Kamm,  R. D., 1994, “Airway Surface Liquid Thickness as a Function of Lung Volume in Small Airways of the Guinea Pig,” J. Appl. Physiol., 77, pp. 2333–2340.
Bastacky,  J., Lee,  C. Y. C., Goerke,  J., Koushafar,  H., Yager,  D., Kenaga,  L., Speed,  T. P., Chen,  Y., and Clements,  J. A., 1995, “Alveolar Lining Layer Is Thin and Continuous: Low-Temperature Scanning Electron Microscopy of Rat Lung,” J. Appl. Physiol., 79, pp. 1615–1628.
Hills, B. A., 1988, The Biology of Surfactant, Cambridge University Press, Cambridge.
Jensen,  O. E., 1997, “The Thin Liquid Lining of a Weakly Curved Cylindrical Tube,” J. Fluid Mech., 331, pp. 373–403.
Borgas,  M. S., and Grotberg,  J. B., 1988, “Monolayer Flow on a Thin Film,” J. Fluid Mech., 193, pp. 151–170.
Williams, H. A. R., and Jensen, O. E., 1999, “Two-Dimensional Nonlinear Advection-Diffusion in a Model of Surfactant Spreading on a Thin Liquid Film,” IMA J. Appl. Math. (submitted).
Jensen,  O. E., and Halpern,  D., 1998, “The Stress Singularity in Surfactant-Driven Thin-Film Flows. Part 1. Viscous Effects,” J. Fluid Mech., 372, pp. 259–300.
Williams, H. A. R., 1998, Ph.D. Thesis, University of Cambridge, available from http://www.damtp.cam.ac.uk/user/bioguest/HARVEY/THESIS.
Jensen,  O. E., 1998, “The Stress Singularity in Surfactant-Driven Thin-Film Flows. Part 2. Inertial Effects,” J. Fluid Mech., 372, 301–322.
Gaver,  D. P., and Grotberg,  J. B., 1990, “The Dynamics of a Localized Surfactant on a Thin-Film,” J. Fluid Mech., 213, pp. 127–148.
Galaktionov,  V. A., and King,  J. R., 1996, “On the Behavior of Blow-up Interfaces for an Inhomogeneous Filtration Equation,” IMA J. Appl. Math., 57, pp. 53–77.
Grundy,  R. E., 1983, “Large Time Solutions of an Inhomogeneous Nonlinear Diffusion Equation,” Proc. R. Soc. London, Ser. A, 386, pp. 347–372.
Rosenau,  P., and Kamin,  S., 1982, “Nonlinear Diffusion in a Finite Mass Medium,” Commun. Pure Appl. Math., 35, pp. 113–127.
Grotberg,  J. B., Halpern,  D., and Jensen,  O. E., 1995, “The Interaction of Exogenous and Endogenous Surfactant: Spreading-Rate Effects,” J. Appl. Physiol., 78, pp. 750–756.
Bull,  J. L., Nelson,  L. K., Walsh,  J. T., Glucksberg,  M. R., Schürch,  S., and Grotberg,  J. B., 1999, “Surfactant-Spreading and Surface-Compression Disturbance on a Thin Viscous Film,” ASME J. Biomech. Eng., 121, pp. 89–98.


Grahic Jump Location
A schematic cross section of a small airway under compression, showing air (A), liquid lining (L), mucosa (M) surrounded by a ring of smooth muscle, at (a) large and (b) small fluid volumes
Grahic Jump Location
Equilibrium liquid lining inside a cylindrical airway: (a) lining of uniform depth; (b) an eccentric lumen with a nonuniform annular lining; (c) lining forming a rivulet with zero contact angle
Grahic Jump Location
A snapshot of a localized monolayer spreading along a channel of nonuniform depth, indicating (top) the concentration distribution along y=0 and y=1, and (bottom) a plan view of the monolayer (shaded), showing the contour Γ=0 (the monolayer’s leading edge, where the flow is fully two dimensional) and two typical contours of constant concentration in the long bulk region where either Γt<0 or Γt>0
Grahic Jump Location
The downward-sloping lines show the surfactant distribution Γ(x, 0, 50) computed using the full model (Eq. (1), solid) and the simplified model (Eq. (4), dashed), with ε=0.5. Also shown are the corresponding film depth distributions h(x, 0, 50) (solid) and h0(0)=1.5 (dashed).
Grahic Jump Location
The function I(y; ε)−I(y; ε) (with I given by Eq. (15)) is plotted for values of ε=0.1 (solid), 0.3, 0.5, 0.7, 0.9, and 0.99.
Grahic Jump Location
The monolayer’s leading edge (solid lines) at t=50 for ε=0, 0.25, 0.5, and 0.75, computed using Eq. (4). The dashed line gives the fitted function x=4.104+0.313 I(y; ε).
Grahic Jump Location
The difference in monolayer length along the deepest and shallowest parts of the channel D(t)=Ld(t)−Ls(t) plotted for ε=0.25, 0.5, and 0.75 using the full model (Eq. (1), solid) and the simplified model (Eq. (4), dashed)
Grahic Jump Location
A schematic illustration of a localized monolayer (shaded) spreading over a rivulet of thickness h(y)=1+cos(πy), showing three typical contours of constant surfactant concentration. In the bulk region the monolayer concentration is approximately uniform in the transverse direction.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In