0
TECHNICAL PAPERS

Viscoelastic Behavior of a Lung Alveolar Duct Model

[+] Author and Article Information
E. Denny, R. C. Schroter

Department for Biological and Medical Systems, Imperial College of Science, Technology, and Medicine, London SW7 2BX, England

J Biomech Eng 122(2), 143-151 (Oct 18, 1999) (9 pages) doi:10.1115/1.429644 History: Received April 07, 1997; Revised October 18, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Stamenović,  S., and Barnas,  G. M., 1995, “Effect of Surface Forces on Oscillatory Behaviour of Lungs,” J. Appl. Physiol., 79, pp. 1578–1585.
Navajas,  D., Moretto,  A., Rotger,  M., Nagase,  T., Dallaire,  J. M., and Ludwig,  M. S., 1995, “Dynamic Elastance and Tissue Resistance of Isolated Liquid-Filled Rat Lungs,” J. Appl. Physiol., 79, pp. 1595–1600.
Schürch,  S., Schürch,  D., Curstedt,  T., and Robertson,  B., 1994, “Surface Activity of Lipid Extract Surfactant in Relation to Film Area Compression and Collapse,” J. Appl. Physiol., 77, pp. 974–986.
Denny,  E., and Schroter,  R. C., 1995, “The Mechanical Behavior of a Mammalian Lung Alveolar Duct Model,” ASME J. Biomech. Eng., 117, pp. 254–261.
Fung, Y. C., 1991, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
Navajas,  D., Maksym,  G. N., and Bates,  J. H. T., 1995, “Dynamic Viscoelastic Nonlinearity of Lung Parenchymal Tissue,” J. Appl. Physiol., 79, pp. 348–356.
Otis,  D. R., Ingenito,  E. P., Kamm,  R. D., and Johnson,  M., 1994, “Dynamic Surface Tension of Surfactant TA: Experiments and Theory,” J. Appl. Physiol., 77, pp. 2681–2688.
Matsuda,  M., Fung,  Y. C., and Sobin,  S. S., 1987, “Collagen and Elastin Fibres in Human Pulmonary Alveolar Mouths and Duct,” J. Appl. Physiol., 63, pp. 1185–1194.
Sobin,  S. S., Fung,  Y. C., and Tremer,  H. M., 1988, “Collagen and Elastin Fibres in Human Pulmonary Alveolar Walls,” J. Appl. Physiol., 64, pp. 1659–1675.
Mercer,  R. R., and Crapo,  J. D., 1990, “Spatial Distribution of Collagen and Elastin Fibres in the Lungs,” J. Appl. Physiol., 69, pp. 756–765.
Denny,  E., and Schroter,  R. C., 1997, “Relationships Between Alveolar Size and Fiber Distribution in a Mammalian Lung Alveolar Duct Model,” ASME J. Biomech. Eng., 119, pp. 289–297.
Mijailovich,  S. M., Stamenović,  D., and Fredberg,  J. J., 1993, “Toward a Kinetic Theory of Connective Tissue Mechanics,” J. Appl. Physiol., 74, pp. 665–681.
Suki,  B., Barabási,  A., and Lutchen,  K. R., 1994, “Lung Tissue Viscoelasticity: A Mathematical Framework and Its Molecular Basis,” J. Appl. Physiol., 76, pp. 2749–2759.
Bates,  J. H. T., Maksym,  G. N., Navajas,  D., and Suki,  B., 1994, “Lung Tissue Rheology and 1/f Noise,” Ann. Biomed. Eng., 22, pp. 674–681.
Fredberg,  J. J., and Stamenović,  D., 1989, “On the Imperfect Elasticity of Lung Tissue,” J. Appl. Physiol., 67, pp. 2408–2419.
Mijailovich,  S. M., Stamenović,  D., Brown,  R., Leith,  D. E., and Fredberg,  J. J., 1994, “Dynamic Moduli of Rabbit Lung Tissue and Pigeon Ligamentum Propatagiale Undergoing Uniaxial Cyclic Loading,” J. Appl. Physiol., 76, pp. 773–782.
Putz,  G., Geoerke,  J., Taeusch,  H. W., and Clements,  J. A., 1994, “Comparison of Captive and Pulsating Bubble Surfactometers With Use of Lung Surfactants,” J. Appl. Physiol., 76, pp. 1425–1431.
Karakaplan,  A. D., Bieniek,  M. P., and Skalak,  R., 1980, “A Mathematical Model of Lung Parenchyma,” ASME J. Biomech. Eng., 102, pp. 124–136.
Kowe,  R., Schroter,  R. C., Matthews,  F. L., and Hitchings,  D., 1986, “Analysis of Elastic and Surface Tension Effects in the Lung Alveolus Using Finite Element Methods,” J. Biomech., 19, pp. 541–549.
Crisfield, M. A., 1991, Non-linear Finite Element Analysis of Solids and Structures, Wiley, London.
Shen,  Y. P., Hasebe,  N., and Lee,  L. X., 1995, “The Finite Element Method of Three-Dimensional Nonlinear Viscoelastic Large Deformation Problems,” Comput. Struct., 55, pp. 659–666.
Ingenito,  E. P., Mark,  L., and Davidson,  B., 1994, “Effects of Acute Lung Injury on Dynamic Tissue Properties,” J. Appl. Physiol., 77, pp. 2689–2697.
Akahori,  T., Suzuki,  S., Suzuki,  M., and Okubo,  T., 1993, “Dynamic Behavior of Alveolar Surface-to-Volume Ratio in Live Dogs by Light-Scattering Stereology,” J. Appl. Physiol., 75, pp. 1624–1629.
Gil,  J., Bachofen,  H., Gehr,  P., and Weibel,  E. R., 1979, “Alveolar Volume–Surface Area Relation in Air- and Saline-Filled Lungs Fixed by Vascular Perfusion,” J. Appl. Physiol., 47, pp. 990–1001.
Wilson,  T. A., and Bachofen,  H., 1982, “A Model of Mechanical Structure of the Alveolar Duct,” J. Appl. Physiol., 52, pp. 1064–1070.
Mercer,  R. R., Laco,  J. M., and Crapo,  J. D., 1987, “Three-Dimensional Reconstruction of Alveoli in the Rat Lung for Pressure–Volume Relationships,” J. Appl. Physiol., 62, pp. 1480–1487.
Oldmixon,  E. H., Butler,  J. P., and Hoppin,  F. G., 1989, “Lengths and Topology of Alveolar Septal Borders,” J. Appl. Physiol., 67, pp. 1930–1940.
Yager,  D., Feldman,  H., and Fung,  Y. C., 1992, “Microscopic vs. Macroscopic Deformation of the Pulmonary Alveolar Duct,” J. Appl. Physiol., 72, pp. 1348–1354.
Hoppin, F. G., Jr., and Hildebrandt, J., 1977, “Mechanical Properties of the Lung,” Bioengineering Aspects of the Lung, J. B. West, ed., Marcel Dekker, New York.
Mercer,  R. R., Russell,  M. L., and Crapo,  J. D., 1994, “Alveolar Septal Structure in Different Species,” J. Appl. Physiol., 77, pp. 1060–1066.
Hildebrandt,  J., 1969, “Dynamic Properties of Air-Filled Excised Cat Lung Determined by Liquid Plethysmograph,” J. Appl. Physiol., 27, pp. 246–250.
Lutchen,  K. R., Suki,  B., Zhang,  Q., Peták,  F., Daróczy,  B., and Hantos,  Z., 1994, “Airway and Tissue Mechanics During Physiological Breathing and Bronchoconstriction in Dogs,” J. Appl. Physiol., 77, pp. 373–385.

Figures

Grahic Jump Location
Behavior of the time-dependent surface tension model: (a) plot of surface tension versus area for three cycling frequencies; (b) plot of surface tension versus area for three sinusoidal area amplitudes of 0.3S0,0.5S0, and 1.0S0, where S and S0 are the current and initial areas, respectively
Grahic Jump Location
Behavior of the alveolar duct model for a vital capacity volume excursion: (a) plot of pressure versus total duct unit volume; (b) plot of surface area-to-volume ratio versus duct unit volume
Grahic Jump Location
Behavior of the alveolar duct model for a tidal volumetric strain amplitude of 8 percent TDC about a mean operating volumetric strain of 60 percent TDC with cycling frequency of 1 Hz: (a) plot of pressure versus duct unit volume; (b) plot of surface area-to-volume ratio versus duct unit volume
Grahic Jump Location
Dependence of the duct model dynamic properties on frequency: (a) plot of duct model resistance (Rti) versus frequency; (b) plot of duct model dynamic elastance (Edyn) versus frequency
Grahic Jump Location
Behavior of the alveolar duct model with smaller alveolar dimensions. The alveolar dimension is defined by L, the septal border length at TDC, relative to L0, the border length of the original model at TDC. The labels refer to two models where L/L0=1.0 and L/L0=0.5: (a) plot of pressure versus duct unit volume; (b) plot of normalized surface area-to-volume ratio versus duct unit volume.
Grahic Jump Location
Behavior of the visco-elastic connective tissue fiber bundle model: (a) stress response for sinusoidal strain amplitudes of 0.1 at a frequency of 1 Hz over a range of mean operating strains; (b) plot of fiber resistance (Rf) versus mean operating strain; (c) plot of fiber dynamic elastance (Ef) versus mean operating strain
Grahic Jump Location
Geometry of a single truncated octahedron showing the idealized arrangement of fiber bundles along the septal borders and across the septal faces
Grahic Jump Location
(a) Assemblage of truncated octahedra modeling an alveolar duct surrounded by alveoli; (b) front-facing polyhedra are removed to reveal the internal structure of the longitudinal duct airspace

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In