0
RESEARCH PAPERS

Estimation of Organ Transport Function: Model-Free Deconvolution by Recursive Quadratic Programming Optimization

[+] Author and Article Information
Zheng Li, Baruch B. Lieber

Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260

J Biomech Eng 114(4), 482-489 (Nov 01, 1992) (8 pages) doi:10.1115/1.2894098 History: Received March 20, 1991; Revised December 17, 1991; Online March 17, 2008

Abstract

A model-free deconvolution method is proposed for evaluating the frequency distribution function of organ transit times. The deconvolution is treated as a nonlinear constrained optimization problem and it is solved by using a modified constrained variable metric approach. The only constraint implemented in the solution is that all the discrete transport function values are not allowed to become negative. The method is tested on model mathematical systems of known analytical transport functions. The tests are performed on systems that included noise in both the input and output functions. The criteria of successful deconvolution are the reconvolution error and, most importantly, the deviation of the computed transport function from the known analytical one. The proposed method is then applied, as a pilot experiment, to biological data obtained from an isolated, perfused rabbit lung preparation contained within a plethysmograph. The results indicate that this type of deconvolution produces stable estimates which faithfully follow the analytical function while negating the need to assume either any functional form for the behavior of the transport function or any educated initial guess of its values.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In