0
RESEARCH PAPERS

Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model

[+] Author and Article Information
K. Perktold, M. Resch, H. Florian

Institute of Mathematics, Technical University Graz, Graz, Austria

J Biomech Eng 113(4), 464-475 (Nov 01, 1991) (12 pages) doi:10.1115/1.2895428 History: Received March 01, 1990; Revised May 01, 1991; Online March 17, 2008

Abstract

Numerical analysis of flow phenomena and wall shear stresses in the human carotid artery bifurcation has been carried out using a three-dimensional geometrical model. The primary aim of this study is the detailed discussion of non-Newtonian flow velocity and wall shear stress during the pulse cycle. A comparison of non-Newtonian and Newtonian results is also presented. The applied non-Newtonian behavior of blood is based on measured dynamic viscosity. In the foreground of discussion are the flow characteristics in the carotid sinus. The investigation shows complex flow patterns especially in the carotid sinus where flow separation occurs at the outer wall throughout the systolic deceleration phase. The changing sign of the velocity near the outer sinus wall results in oscillating shear stress during the pulse cycle. At the outer wall of the sinus at maximum diameter level the shear stress ranges from −1.92 N/m2 to 1.22 N/m2 with a time-averaged value of 0.04 N/m2 . At the inner wall of the sinus at maximum diameter level the shear stress range is from 1.16 N/m2 to 4.18 N/m2 with a mean of 1.97 N/m2 . The comparison of non-Newtonian and Newtonian results indicates unchanged flow phenomena and rather minor differences in the basic flow characteristics.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In