Fracture Prediction for the Proximal Femur Using Finite Element Models: Part II—Nonlinear Analysis

[+] Author and Article Information
J. C. Lotz, E. J. Cheal, W. C. Hayes

Orthopaedic Biomechanics Laboratory, Department of Orthopaedic Surgery, Charles A. Dana Research Institute, Beth Israel Hospital and Harvard Medical School, Boston, MA 02215

J Biomech Eng 113(4), 361-365 (Nov 01, 1991) (5 pages) doi:10.1115/1.2895413 History: Received November 05, 1989; Revised April 15, 1991; Online March 17, 2008


In Part I we reported the results of linear finite element models of the proximal femur generated using geometric and constitutive data collected with quantitative computed tomography. These models demonstrated excellent agreement with in vitro studies when used to predict ultimate failure loads. In Part II, we report our extension of those finite element models to include nonlinear behavior of the trabecular and cortical bone. A highly nonlinear material law, originally designed for representing concrete, was used for trabecular bone, while a bilinear material law was used for cortical bone. We found excellent agreement between the model predictions and in vitro fracture data for both the onset of bone yielding and bone fracture. For bone yielding, the model predictions were within 2 percent for a load which simulated one-legged stance and 1 percent for a load which simulated a fall. For bone fracture, the model predictions were within 1 percent and 17 percent, respectively. The models also demonstrated different fracture mechanisms for the two different loading configurations. For one-legged stance, failure within the primary compressive trabeculae at the subcapital region occurred first, leading to load transfer and, ultimately, failure of the surrounding cortical shell. However, for a fall, failure of the cortical and trabecular bone occurred simultaneously within the intertrochanteric region. These results support our previous findings that the strength of the subcapital region is primarily due to trabecular bone whereas the strength of the intertrochanteric region is primarily due to cortical bone.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In