0
RESEARCH PAPERS

Ligament-Bone Interaction in a Three-Dimensional Model of the Knee

[+] Author and Article Information
L. Blankevoort, R. Huiskes

Biomechanics Section, Institute of Orthopaedics, University of Nijmegen, Nijmegen, The Netherlands

J Biomech Eng 113(3), 263-269 (Aug 01, 1991) (7 pages) doi:10.1115/1.2894883 History: Received August 10, 1990; Revised March 30, 1991; Online March 17, 2008

Abstract

In mathematical knee-joint models, the ligaments are usually represented by straightline elements, connecting the insertions of the femur and tibia. Such a model may not be valid if a ligament is bent in its course over bony surfaces, particularly not if the resulting redirection of the ligament force has a considerable effect on the laxity or motion characteristics of the knee-joint model. In the present study, a model for wrapping of a ligament around bone was incorporated in a three-dimensional mathematical model of the human knee. The bony edge was described by a curved line on which the contact point of the line element representing a ligament bundle was located. Frictionless contact between the ligament bundle and the bone was assumed. This model was applied to the medial collateral ligament (MCL) interacting with the bony edge of the tibia. It was found that, in comparison with the original model without bony interactions, the bony edge redirected the ligament force of the MCL in such a way that it counterbalanced valgus moments on the tibia more effectively. The effect of the bony interaction with the MCL on the internal-external rotation laxity, however, was negligible.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In