0
RESEARCH PAPERS: Papers on Tissue Engineering

Hematopoiesis on Suspended Nylon Screen-Stromal Cell Microenvironments

[+] Author and Article Information
B. A. Naughton

Medical Laboratory Sciences Department, Hunter College School of Health Sciences, New York, NY

A. Tjota

Children’s Hospital of Buffalo, Buffalo, NY

B. Sibanda, G. K. Naughton

Marrow Tech Inc., LaJolla, CA

J Biomech Eng 113(2), 171-177 (May 01, 1991) (7 pages) doi:10.1115/1.2891230 History: Received January 20, 1991; Revised February 01, 1991; Online March 17, 2008

Abstract

A three-dimensional culture system for the growth of primate and rodent bone marrow was developed in our laboratory. This method involves the seeding of stromal cells onto a nylon screen and the inoculation of fresh or cryopreserved bone marrow hematopoietic cells after stromal cell processes had extended across 3 to 4 out of every 5 mesh openings. Stromal cells attach, grow, and secrete matrix proteins which contribute to an intricate microenvironment for the support of multilineage hematopoiesis, which was observed for >270 days in the rat model and for >12 weeks in the human system, as evidenced by flow cytometry analysis and in vitro clonogenic assays. The adherent zones of these suspended nylon screen cultures consisted primarily of immature cells. These cultures could also be used as substrates for cytotoxicity measurements; treatment of rat bone marrow cultures of various ages with cytosine β-D arabinofuranoside, cyclophosphamide, 5-fluorouracil, or methotrexate resulted in a dose-dependent decrease in CFU-C numbers and altered the phenotypic distribution of hematologic cells in the adherent zone. The use of a modification of this method to generate large numbers of active cytolytic cells after >75 days culture of rat bone marrow-derived natural killer cells is described also. Suspended nylon screen bone marrow culture also has potential uses in genetic insertion and graft vs. host disease studies, blood component therapy, the evaluation of ex vivo purging programs, and in marrow expansion for transplantation.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In