RESEARCH PAPERS: Papers on Cell Biomechanics

The Behavior of Human Neutrophils During Flow Through Capillary Pores

[+] Author and Article Information
R. S. Frank, M. A. Tsai

Department of Mechanical Engineering, University of Rochester, Rochester NY 14627

J Biomech Eng 112(3), 277-282 (Aug 01, 1990) (6 pages) doi:10.1115/1.2891185 History: Received November 01, 1989; Revised May 22, 1990; Online March 17, 2008


The passage times of individual human neutrophils through single capillary-sized pores in polycarbonate membranes were measured with the resistive pulse technique, and results were compared to those obtained from the micropipette aspiration of entire cells. Pore transit measurement serves as a useful means to screen populations of cells, and allows for protocols that measure time dependent changes to the population. Neutrophils exhibited a highly linear pressure/flow rate relationship at aspiration pressures from 200 Pa to 1,500 Pa in both the pore and pipette systems. Cellular viscosity, as determined by the method of Hochmuth and Needham, was 89.0 Pa·s for the pore systems and 134.9 Pa·s for the pipette systems. These results are in general agreement with recent values of neutrophil viscosity published in the literature. Extrapolation of the observed linear flow response revealed an apparent minimum pressure for whole cell aspiration significantly above the threshold pressure predicted by Evans’ liquid drop model. However, whole cell aspiration was achieved in both the pore and pipette systems at pressures below this extrapolated minimum, although the calculated cellular viscosity was greatly increased. The implications of these two regimes of cell deformation is unclear. This behavior could be explained by shear thinning of the material in the cell body. However the origin of this phenomenon may be in the cortical region of the cell, which exhibits an elastic tension that may be deformation rate dependent.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In