0
RESEARCH PAPERS

Experimental Analysis of Pulsatile Flow Through Elastic Collapsible Tubes: Application to Cardiac Assist Device

[+] Author and Article Information
O. Lichtenstein, U. Dinnar

Dept. of Biomedical Engineering, Technion—Israel Institute of Technology Haifa, 3200, Israel

J Biomech Eng 112(1), 75-79 (Feb 01, 1990) (5 pages) doi:10.1115/1.2891129 History: Received April 14, 1988; Revised November 10, 1989; Online March 17, 2008

Abstract

This study presents a simulated analysis of Phased Compression Cardiac Assist Device (PCCAD) and evaluation of its applicability as a non-invasive temporary assist for a failing heart. The new technique is based on the chest pump mechanism for blood flow augmentation during external massage by phased compression of the abdominal and thoracic cavities. A semi-closed hydraulic system to simulate the systemic circulation was constructed; the system includes a left ventricle which functions according to the Starling principle and a pneumatic system which controls the pressures applied to the thoracic and abdominal cavities, in complete synchronization with the beating normal or failing heart. The possibility of manipulating the three pumps in series (venous, heart, and arterial) has been checked, and the principal parameters which effect the efficiency of the PCCAD were evaluated. This in-vitro analysis shows the high potential of a non-invasive temporary cardiac assist device. It points to the necessary measures one has to take in order to achieve good synchronization and to interfere externally with the augmentation of cardiac output or with the augmentation of root aortic pressure.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In