0
RESEARCH PAPERS

An In Vitro Comparative Study of St. Jude Medical and Edwards-Duromedics Bileaflet Valves Using Laser Anemometry

[+] Author and Article Information
R. Fatemi, K. B. Chandran

Department of Biomedical and Mechanical Engineering, University of Iowa, Iowa City, Iowa 52248

J Biomech Eng 111(4), 298-302 (Nov 01, 1989) (5 pages) doi:10.1115/1.3168382 History: Received March 28, 1988; Revised May 10, 1989; Online June 12, 2009

Abstract

An in vitro comparative study of St. Jude (SJ) and Edwards-Duromedics (DM) Bileaflet valves was performed under steady and physiological pulsatile flow conditions in an axisymmetric chamber using Laser Doppler Anemometry (LDA). LDA measurements were conducted in two different orientations; in the first orientation, the LDA traverse was perpendicular and, in the second orientation, parallel to the tilt axis of the leaflets. The axial velocities were measured in both orientations at two different locations distal to the valves. The velocity profiles at peak systole show the presence of stronger vortex in the sinus region for flow past SJ valve in the first orientation compared to the DM valve. Velocity profile distal to the SJ valve in second orientation was relatively flat where as for the DM valve, a jet-like flow was present. The differences found in the velocity profiles between the two valves can be attributed to the differences in geometry with thicker leaflets, smaller angle of leaflets opening and the presence of the leaflet curvature for the DM valve. The results obtained in this study do not show any fluid dynamic advantages due to the curved leaflet geometry of the DM valve.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In