0
RESEARCH PAPERS

A Theory of Blood Flow in Skeletal Muscle

[+] Author and Article Information
G. W. Schmid-Schönbein

AMES–Bioengineering, University of California, San Diego, La Jolla, California 92093

J Biomech Eng 110(1), 20-26 (Feb 01, 1988) (7 pages) doi:10.1115/1.3108401 History: Received October 14, 1986; Revised December 02, 1987; Online June 12, 2009

Abstract

A theoretical analysis of blood flow in the microcirculation of skeletal muscle is provided. The flow in the microvessels of this organ is quasi steady and has a very low Reynolds number. The blood is non-Newtonian and the blood vessels are distensible with viscoelastic properties. A formulation of the problem is provided using a viscoelastic model for the vessel wall which was recently derived from measurements in the rat spinotrapezius muscle (Skalak and Schmid-Schönbein, 1986b). Closed form solutions are derived for several physiologically important cases, such as perfusion at steady state, transient and oscillatory flows. The results show that resting skeletal muscle has, over a wide range of perfusion pressures an almost linear pressure-flow curve. At low flow it exhibits nonlinearities. Vessel distensibility and the non-Newtonian properties of blood both have a strong influence on the shape of the pressure-flow curve. During oscillatory flow the muscle exhibits hysteresis. The theoretical results are in qualitative agreement with experimental observations.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In