Continuum Mechanical Model of Leukocytes During Protopod Formation

[+] Author and Article Information
G. W. Schmid-Schönbein

AMES-Bioengineering, University of California, San Diego, La Jolla, Calif. 92093

R. Skalak

Department of Civil Engineering and Engineering Mechanics, Bioengineering Institute, Columbia University, New York, N.Y. 10027

J Biomech Eng 106(1), 10-18 (Feb 01, 1984) (9 pages) doi:10.1115/1.3138448 History: Received April 10, 1983; Revised October 19, 1983; Online June 15, 2009


A new continuum mechanical theory for protopod extension in leukocytes is developed. Protopod formation is an active process which is the basis for amoeboid displacement on substrates. Leukocytes may form protopods both when adhering to a substrate and when freely suspended in plasma. Therefore the required energy is derived from the cell itself. Protopods are depleted of granules and other organelles, they have a fine fibrillar ultrastructure, and they are covered by a cell membrane. They grow at about 5 μm/min until they reach a length of 4–5 μm. A period of protopod retraction follows during which granules re-enter via the protopod base by Brownian motion. Micropipette experiments have indicated that the protoplasm in the leukocyte has viscoelastic properties, whereas the protopod is stiffer and shows elastic behavior. We propose a continuum theory based on the polymerization of the actin matrix in the cell which results in gelation with a preferred orientation. It is triggered by influx of Ca++ across local regions of the cell membrane and the polymerization occurs along an interface at the base of the polymerized protopod. As cytoplasm passes through the interface it is subject both to a volumetric strain due to exclusion of granules and a shear strain due to alignment of actin molecules. The polymerization provides an active force leading to projection of the protopod and cell deformation. The base of the protopod rests on the unpolymerized cytoplasm along the interface. As the external plasma medium and the cell membrane, if it is not stretched taut, offer little resistance, the projection of the protopod proceeds outward with simultaneous unfolding of the membrane. On the other hand, in osmotically swollen cells the membrane offers considerable resistance as it is under tension and the actin polymerization proceeds inward. A general set of equations are formulated and some special solutions are discussed.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In