0
RESEARCH PAPERS

Inversion of a Class of Nonlinear Stress-Strain Relationships of Biological Soft Tissues

[+] Author and Article Information
Y. C. Fung

Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, Calif. 92093

J Biomech Eng 101(1), 23-27 (Feb 01, 1979) (5 pages) doi:10.1115/1.3426219 History: Received July 19, 1978; Online October 21, 2010

Abstract

The mechanical properly of soft tissues is highly nonlinear. Normally, the stress tensor is a nonlinear function of the strain tensor. Correspondingly, the strain energy function is not a quadratic function of the strain. The problem resolved in the present paper is to invert the stress-strain relationship so that the strain tensor can be expressed as a nonlinear function of the stress tensor. Correspondingly, the strain energy function is inverted into the complementary energy function which is a function of stresses. It is shown that these inversions can be done quite simply if the strain energy function is an analytic function of a polynomial of the strain components of the second degree. We have shown previously that experimental results on the skin, the blood vessels, the mesentery, and the lung tissue can be best described by strain energy functions of this type. Therefore, the inversion presented here is applicable to these tissues. On the other hand, a popular strain energy function, a polynomial of third degree or higher, cannot be so inverted.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In