An Analysis of Sensible Respiratory Heat Exchange During Inspiration Under Environmental Conditions of Deep Diving

[+] Author and Article Information
C. E. Johnson, L. S. Linderoth

Department of Mechanical Engineering and Materials Science, School of Engineering, Duke University, Durham, N. C.; F. G. Hall Laboratory for Environmental Research, Duke University, Durham, N. C.

M. L. Nuckols

U. S. Naval Weapons Laboratory, Dahlgren, Va.

J Biomech Eng 99(1), 45-53 (Feb 01, 1977) (9 pages) doi:10.1115/1.3426268 History: Received August 20, 1976; Online October 21, 2010


Temperature of the gas stream and mucosa were measured in the upper and lower trachea and right and left main bronchi of several anesthetized, intubated and mechanically respired mongrel dogs. Airway temperatures were measured using an airway sensor probe instrumented with microthermistors. Each thermistor was integrated into an especially designed. Wheatstone bridge whose signal of millivolts was displayed on a calibrated polygraph recorder. Diving respiratory conditions were simulated by utilization of an appropriate ventilatory periodic flow through an endotracheal airway which by-passed the efficient gas conditioning nasal turbinates of the dog. Deep diving respiratory environmental conditions of gas temperature, density and thermal capacitance (ρCp ) were simulated in a hyperbaric chamber. The temperatures recorded during in vivo periodic positive pressure ventilation were applied to a quasi-steady flow model based upon the morphological dimensions of the Weibel model. An empirical mathematical model of inspiratory sensible heat loss was verified and slightly modified to better reflect the overall dimensionless heat transfer relationship Nu = 0.302 (RePr)0.786 that existed in the major bronchial airways of the experimental subject. The design of the experimental instrumentation is explained in detail, as is the basic mathematical model. Significance of the experimental findings is discussed.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In