0
Research Papers

The Path to Deliver the Most Realistic Follower Load for a Lumbar Spine in Standing Posture: A Finite Element Study

[+] Author and Article Information
Han Zhang

Shanghai Institute of Applied
Mathematics and Mechanics,
Shanghai University,
Shanghai, 200072, China

Weiping Zhu

Shanghai Institute of Applied
Mathematics and Mechanics,
Shanghai University,
Shanghai, 200072, China
e-mail: wpzhu@shu.edu.cn

1Corresponding author.

Manuscript received March 14, 2018; final manuscript received December 26, 2018; published online January 31, 2019. Assoc. Editor: Eric A. Kennedy.

J Biomech Eng 141(3), 031010 (Jan 31, 2019) (10 pages) Paper No: BIO-18-1139; doi: 10.1115/1.4042438 History: Received March 14, 2018; Revised December 26, 2018

A spine is proven to be subjected to a follower load which is a compressive load of physiologic magnitude acting on the whole spine. The path of the follower load approximates the tangent to the curve of the spine in in vivo neutral standing posture. However, the specific path location of the follower load is still unclear. The aim of this study is to find out the most realistic location of the follower load path (FLP) for a lumbar spine in standing. A three-dimensional (3D) nonlinear finite element model (FEM) of lumbosacral vertebrae (L1-S1) with consideration of the calibrated material properties was established and validated by comparing with the experimental data. We show that the shape of the lumbosacral spine is strongly affected by the location of FLP. An evident nonlinear relationship between the FLP location and the kinematic response of the L1-S1 lumbosacral spine exists. The FLP at about 4 and 3 mm posterior to the curve connecting the center of the vertebral bodies delivers the most realistic location in standing for healthy people and patients having low back pains (LPBs), respectively. Moreover, the “sweeping” method introduced in this study can be applicable to all individualized FEM to determine the location of FLP.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dreischarf, M. , Albiol, L. , Zander, T. , Arshad, R. , Graichen, F. , Bergmann, G. , Schmidt, H. , and Rohlmann, A. , 2015, “ In Vivo Implant Forces Acting on a Vertebral Body Replacement During Upper Body Flexion,” J. Biomech., 48(4), pp. 560–565. [CrossRef] [PubMed]
Dreischarf, M. , Schmidt, H. , Putzier, M. , and Zander, T. , 2015, “ Biomechanics of the L5-S1 Motion Segment After Total Disc Replacement–Influence of Iatrogenic Distraction, Implant Positioning and Preoperative Disc Height on the Range of Motion and Loading of Facet Joints,” J. Biomech., 48(12), pp. 3283–3291. [CrossRef] [PubMed]
Hajihosseinali, M. , Arjmand, N. , and Shirazi-Adl, A. , 2015, “ Effect of Body Weight on Spinal Loads in Various Activities: A Personalized Biomechanical Modeling Approach,” J. Biomech., 48(2), pp. 276–282. [CrossRef] [PubMed]
Andersson, G. B. , 1998, “ Epidemiology of Low Back Pain,” Acta. Orthop. Scand. Suppl., 6(Suppl. 281), pp. 28–31. [CrossRef]
El-Rich, M. , Arnoux, P. J. , Wagnac, E. , Brunet, C. , and Aubin, C. E. , 2009, “ Finite Element Investigation of the Loading Rate Effect on the Spinal Load-Sharing Changes Under Impact Conditions,” J. Biomech., 42(9), pp. 1252–1262. [CrossRef] [PubMed]
Arjmand, N. , Ekrami, O. , Shirazi-Adl, A. , Plamondon, A. , and Parnianpour, M. , 2013, “ Relative Performances of Artificial Neural Network and Regression Mapping Tools in Evaluation of Spinal Loads and Muscle Forces During Static Lifting,” J. Biomech., 46(8), pp. 1454–1462. [CrossRef] [PubMed]
Kiefer, A. , Parnianpour, M. , and Shirazi-Adl, A. , 1997, “ Stability of the Human Spine in Neutral Postures,” Eur. Spine J., 6(1), pp. 45–53. [CrossRef] [PubMed]
Wilke, H. J. , Neef, P. , Caimi, M. , Hoogland, T. , and Claes, L. E. , 1999, “ New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life,” Spine, 24(8), pp. 755–762. [CrossRef] [PubMed]
Rohlmann, A. , Bergmann, G. , and Graichen, F. , 1999, “ Loads on Internal Spinal Fixators Measured in Different Body Positions,” Eur. Spine J., 8(5), pp. 354–359. [CrossRef] [PubMed]
Nachemson, A. , 1966, “ The Load on Lumbar Disks in Different Positions of the Body,” Clin. Orthop., 45, pp. 107–122. [CrossRef]
Rohlmann, A. , Neller, S. , Claes, L. , Bergmann, G. , and Wilke, H. J. , 2001, “ Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine,” Spine, 26(24), pp. E557–E561. [CrossRef] [PubMed]
Patwardhan, A. G. , Havey, R. M. , Carandang, G. , Simonds, J. , and Voronov, L. I. , 2003, “ Effect of Compressive Follower Preload on the Flexion–Extension Response of the Human Lumbar Spine,” J. Orthop. Res., 21(3), pp. 540–546. [CrossRef] [PubMed]
Patwardhan, A. G. , Havey, R. M. , Meade, K. P. , Lee, B. , and Dunlap, B. , 1999, “ A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression,” Spine, 24(10), pp. 1003–1009. [CrossRef] [PubMed]
Aspden, R. M. , 1989, “ The Spine as an Arch. A New Mathematical Model,” Spine, 14(3), pp. 266–274. [CrossRef] [PubMed]
Renner, S. M. , Natarajan, R. N. , Patwardhan, A. G. , Havey, R. M. , Voronov, L. I. , Guo, B. Y. , Andersson, G. B. J. , and An, H. S. , 2007, “ Novel Model to Analyze the Effect of a Large Compressive Follower Pre-Load on Range of Motions in a Lumbar Spine,” J. Biomech., 40(6), pp. 1326–1332. [CrossRef] [PubMed]
Rohlmann, A. , Baue, L. , Zande, T. , Bergmann, G. , and Wilke, H. J. , 2006, “ Determination of Trunk Muscle Forces for Flexion and Extension by Using a Validated Finite Element Model of the Lumbar Spine and Measured In Vivo Data,” J. Biomech., 39(6), pp. 981–989. [CrossRef] [PubMed]
Wilke, H. J. , Rohlmann, A. , Neller, S. , Graichen, F. , Claes, L. , and Bergmann, G. , 2003, “ ISSLS Prize Winner: A Novel Approach to Determine Trunk Muscle Forces During Flexion and Extension: A Comparison of Data From an In Vitro Experiment and In Vivo Measurements,” Spine, 28(23), pp. 2585–2593. [CrossRef] [PubMed]
Goel, V. K. , Panjabi, M. M. , Patwardhan, A. G. , Dooris, A. P. , and Serhan, H. , 2006, “ Test Protocols for Evaluation of Spinal Implants,” J. Bone Jt. Surg. Am., 88(Suppl. 2), pp. 103–109.
Dreischarf, M. , Shirazi-Adl, A. , Arjmand, N. , Rohlmann, A. , and Schmidt, H. , 2016, “ Estimation of Loads on Human Lumbar Spine: A Review of In Vivo and Computational Model Studies,” J. Biomech., 49(6), pp. 833–845. [CrossRef] [PubMed]
Arjmand, N. , Gagnon, D. , Plamondon, A. , Shirazi-Adl, A. , and Larivière, C. , 2010, “ A Comparative Study of Two Trunk Biomechanical Models Under Symmetric and Asymmetric Loadings,” J. Biomech., 43(3), pp. 485–491. [CrossRef] [PubMed]
Patwardhan, A. G. , Meade, K. P. , and Lee, B. , 2001, “ A Frontal Plane Model of the Lumbar Spine Subjected to a Follower Load: Implications for the Role of Muscles,” ASME J. Biomech. Eng., 123(3), pp. 212–217. [CrossRef]
Kim, K. , and Kim, Y. H. , 2008, “ Role of Trunk Muscles in Generating Follower Load in the Lumbar Spine of Neutral Standing Posture,” ASME J. Biomech. Eng., 130(4), p. 041005. [CrossRef]
Rohlmann, A. , Zander, T. , Rao, M. , and Bergmann, G. , 2009, “ Applying a Follower Load Delivers Realistic Results for Simulating Standing,” J. Biomech., 42(10), pp. 1520–1526. [CrossRef] [PubMed]
Han, K. S. , Rohlmann, A. , Yang, S. J. , Kim, B. S. , and Lim, T. H. , 2011, “ Spinal Muscles Can Create Compressive Follower Loads in the Lumbar Spine in a Neutral Standing Posture,” Med. Eng. Phys., 33(4), pp. 472–478. [CrossRef] [PubMed]
Eberlein, R. , Holzapfel, G. A. , and Schulze-Bauer, C. A. J. , 2001, “ An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies,” Comput. Methods Biomech. Biomed. Eng., 4(3), pp. 209–229. [CrossRef]
Woldtvedt, D. J. , Womack, W. , Gadomski, B. C. , and Puttlitz, C. M. , 2011, “ Finite Element Lumbar Spine Facet Contact Parameter Predictions Are Affected by the Cartilage Thickness Distribution and Initial Joint Gap Size,” ASME J. Biomech. Eng., 133(6), p. 061009. [CrossRef]
Liu, C. L. , Zhong, Z. C. , Hsu, H. W. , Shih, S. L. , Wang, S. T. , Hung, C. , and Chen, C. S. , 2011, “ Effect of the Cord Pretension of the Dynesys Dynamic Stabilisation System on the Biomechanics of the Lumbar Spine: A Finite Element Analysis,” Eur. Spine J., 20(11), pp. 1850–1858. [CrossRef] [PubMed]
Rohlmann, A. , Zander, T. , Schmidt, H. , Wilke, H. J. , and Bergmann, G. , 2006, “ Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method,” J. Biomech., 39(13), pp. 2484–2490. [CrossRef] [PubMed]
Ueno, K. , and Liu, Y. K. , 1987, “ A Three-Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Torsion,” ASME J. Biomech. Eng., 109(3), pp. 200–209. [CrossRef]
Whynel, C. M. , Hu, S. S. , and Lotz, J. C. , 2001, “ Parametric Finite Element Analysis of Verterbral Bodies Affected by Tumors,” J. Biomech., 34(10), pp. 1317–1324. [CrossRef] [PubMed]
Noailly, J. , Lacroix, D. , and Planell, J. A. , 2005, “ Finite Element Study of a Novel Intervertebral Disc Substitute,” Spine, 30(20), pp. 2257–2264. [CrossRef] [PubMed]
Zhang, H. , and Zhu, W. P. , 2017, “ Dynamic Response of Stresses in Lumbar Vertebrae During Getting Up,” J. Med. Biomech., 32(4), pp. 348–354. http://www.cnki.net/kcms/doi/10.16156/j.1004-7220.2017.04.009.html
Shirazi-Adl, A. , Ahmed, A. M. , and Shrivastava, S. C. , 1986, “ Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined With Compression,” Spine, 11(9), pp. 914–927. [CrossRef] [PubMed]
Ayturk, U. M. , Garcia, J. J. , and Puttlitz, C. M. , 2010, “ The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine,” ASME J. Biomech. Eng., 132(6), p. 061007. [CrossRef]
Shirazi-Adl, A. , Ahmed, A. M. , and Shrivastava, S. C. , 1986, “ A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments,” J. Biomech., 19(4), pp. 331–350. [CrossRef] [PubMed]
Sharma, M. , Langrana, N. A. , and Rodriguez, J. , 1995, “ Role of Ligaments and Facets in Lumbar Spinal Stability,” Spine, 20(8), pp. 887–900. [CrossRef] [PubMed]
Ayturk, U. M. , and Puttlitz, C. M. , 2011, “ Parametric Convergence Sensitivity and Validation of a Finite Element Model of the Human Lumbar Spine,” Comp. Meth. Biomech. Biomed. Eng., 14(8), pp. 695–705. [CrossRef]
Schmidt, H. , Heuer, F. , Drumm, J. , Klezl, Z. , Claes, L. , and Wilke, H. J. , 2007, “ Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment,” Clin. Biomech., 22(4), pp. 377–384. [CrossRef]
Schmidt, H. , Heuer, F. , Simon, U. , Kettler, A. , Rohlmann, A. , Claes, L. , and Wilke, H. J. , 2006, “ Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus,” Clin. Biomech., 21(4), pp. 337–344. [CrossRef]
Heuer, F. , Schmidt, H. , Klezl, Z. , Claes, L. , and Wilke, H. J. , 2007, “ Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle,” J. Biomech., 40(2), pp. 271–280. [CrossRef] [PubMed]
Brinkmann, P. , and Grootenboer, H. , 1991, “ Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure From Discectomy. An In Vitro Investigation on Human Lumbar Discs,” Spine, 16(6), pp. 641–646. [CrossRef] [PubMed]
Heuer, F. , Schmidt, H. , and Wilke, H. J. , 2008, “ The Relation Between Intervertebral Disc Bulging and Annular Fiber Associated Strains for Simple and Complex Loading,” J. Biomech., 41(5), pp. 1086–1094. [CrossRef] [PubMed]
Du, C. F. , Li, J. W. , Liu, H. Y. , and Huang, Y. P. , 2017, “ Effect of Follower Load on Facet Joint Contact Force of Lumbar Spine,” J. Med. Biomech., 32(4), pp. 363–368.
Wood, K. B. , Kos, P. , Schendel, M. , and Persson, K. , 1996, “ Effect of Patient Position on the Sagittal–Plane Profile of the Thoracolumbar Spine,” J. Spinal Disord., 9(2), pp. 165–169. [CrossRef] [PubMed]
Nachemson, A. , Ortengren, R. , and Andersson, G. B. , 1977, “ Intradiskal Pressure, Intra-Abdominal Pressure and Myoelectric Back Muscle Activity Related to Posture and Loading,” Clin. Orthop. Relat. Res., 129, pp. 156–164. [CrossRef]
Nachemson, A. , Haderspeck, K. , Ortengren, R. , Andersson, G. , and Schultz, A. , 1982, “ Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals,” J. Bone Jt. Surg. Am., 64(5), pp. 713–720. [CrossRef]
Sato, K. , Kikuchi, S. , and Yonezawa, T. , 1999, “ In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems,” Spine, 24(23), pp. 2468–2474. [CrossRef] [PubMed]
Paholpak, P. , Nazareth, A. , Hsieh, P. C. , Buser, Z. , and Wang, J. C. , 2017, “ Kinematic Evaluation of Cervical Sagittal Balance and Thoracic Inlet Alignment in Degenerative Cervical Spondylolisthesis Using Kinematic Magnetic Resonance Imaging,” Spine, 17(9), pp. 1272–1284. [CrossRef]
Consmüller, T. , Rohlmann, A. , Weinland, D. , Druschel, C. , Duda, G. N. , and Taylor, W. R. , 2012, “ Comparative Evaluation of a Novel Measurement Tool to Assess Lumbar Spine Posture and Range of Motion,” Eur. Spine J., 21(11), pp. 2170–2180. [CrossRef] [PubMed]
Consmüller, T. , Rohlmann, A. , Weinland, D. , Druschel, C. , Duda, G. N. , and Taylor, W. R. , 2012, “ Velocity of Lordosis Angle During Spinal Flexion and Extension,” PloS One, 7(11), p. e50135. [CrossRef] [PubMed]
Quint, U. , Wilke, H. J. , Löer, F. , and Claes, L. , 1998, “ Laminectomy and Functional Impairment of the Lumbar Spine: The Importance of Muscle Forces in Flexible and Rigid Instrumented Stabilization—A Biomechanical Study In Vitro,” Eur. Spine J., 7(3), pp. 229–238. [CrossRef] [PubMed]
Zander, T. , Rohlmann, A. , Calisse, J. , and Bergmann, G. , 2001, “ Estimation of Muscle Forces in the Lumbar Spine During Upper-Body Inclination,” Clin. Biomech., 16(S1), pp. S73–S80. [CrossRef]
Heuer, F. , Schmidt, H. , Claes, L. , and Wilke, H. J. , 2007, “ Stepwise Reduction of Functional Spinal Structures Increase Vertebral Translation and Intradiscal Pressure,” J. Biomech., 40(4), pp. 795–803. [CrossRef] [PubMed]
Schmidt, H. , Heuer, F. , Claes, L. , and Wilke, H. J. , 2008, “ The Relation Between the Instantaneous Center of Rotation and Facet Joint Forces—A Finite Element Analysis,” Clin. Biomech., 23(3), pp. 270–278. [CrossRef]
Naserkhakia, S. , Jaremko, J. L. , Adeeb, S. , and El-Rich, M. , 2016, “ On the Load-Sharing Along the Ligamentous Lumbosacral Spine in Flexed and Extended Postures: Finite Element Study,” J. Biomech., 49(6), pp. 974–982. [CrossRef] [PubMed]
Meakin, J. R. , Gregory, J. S. , Smith, F. W. , Gilbert, F. J. , and Aspden, R. M. , 2008, “ Characterizing the Shape of the Lumbar Spine Using an Active Shape Model: Reliability and Precision of the Method,” Spine, 33(7), pp. 807–813. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Finite element model for lumbosacral vertebrae L1-S1 and L4-L5 intervertebral disk

Grahic Jump Location
Fig. 2

Follower load is applied by connector elements in lumbosacral vertebrae L1-S1 bilaterally. Black bold lines represent the connecter elements that located at initial curve. Every pair of connector element passes through the center of each vertebral body on both sides in the sagittal plane. Five pairs of connector elements in each segment are connected head to tail.

Grahic Jump Location
Fig. 3

The range of FLP in neutral standing position. The FLP were swept and evaluated from 10 mm posterior (P10) and 5 mm anterior (A5) to the geometrical center of each lumbar vertebra (initial path).

Grahic Jump Location
Fig. 4

The shape of lumbosacral spine for different location of FLP. (a) Total ROM of lumbosacral spine L1-S1 from P10 (−10.0 mm) to A5 (5.0 mm). (b) Sum of absolute values for IVRs in each level from P10 to A5. The fitted curves of the numerical calculated results and in vivo measured values were also given.

Grahic Jump Location
Fig. 5

(a)–(e) The influence of different location of the FLP between IVR and IDP in each disk. The left longitudinal axis of each figure represented the influence of the position of FLP on the IVR. The right longitudinal axis of each figure represented the influence of the position of FLP on the IDP. The fitted curves of the numerical calculated results of IDP and IVR, as well as in vivo measured values, were also given.

Grahic Jump Location
Fig. 6

The ANN was divided into four regions with specific local weight factors (μa, μal, μpl, and μp)

Grahic Jump Location
Fig. 7

The calibrated stress–strain curves for four regions of fibers and an experimental data [33]

Grahic Jump Location
Fig. 8

The calibrated stress–strain curves for all ligaments of FEM in comparison with an experimental measured data [35]

Grahic Jump Location
Fig. 9

Comparison of the FE model calculated and in vitro experiment [11] rotations in the lumbar spine (L1-5) for flexion-extension (left), lateral bending (middle), and axial rotation (right) under pure moments of 2.5, 5, and 7.5 N·m. The ranges of the in vitro study results were also given.

Grahic Jump Location
Fig. 10

The calculated rotations in the lumbar spine (L1-5) for lateral bending, flexion-extension, and axial rotation under pure moments of 7.5 N·m and a 280 N pre-follower load plus 7.5 N·m. The ranges of the in vitro study results were given.

Grahic Jump Location
Fig. 11

Intradiskal pressure predictions of the model in pure compression

Grahic Jump Location
Fig. 12

The maximum outward DB predictions under axial compression of 500 N and pure unconstraint moments of 7.5 N·m in flexion, lateral bending, and axial rotation

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In