0
Research Papers

Evaluation of the Effect of Bariatric Surgery-Induced Weight Loss on Knee Gait and Cartilage Degeneration

[+] Author and Article Information
Mimmi K. Liukkonen

Department of Applied Physics,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland
e-mail: mimmi.liukkonen@uef.fi

Mika E. Mononen

Department of Applied Physics,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland
e-mail: mika.mononen@uef.fi

Paavo Vartiainen

Department of Applied Physics,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland
e-mail: paavo.vartiainen@uef.fi

Päivi Kaukinen

Institute of Clinical Medicine,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland;
Department of Physical and Rehabilitation
Medicine,
Kuopio University Hospital,
P.O. Box 100,
Kuopio FI-70029, Finland
e-mail: paivi.kaukinen@kuh.fi

Timo Bragge

Charles River Discovery Research Services,
Microkatu 1,
Kuopio FI-70210, Finland
e-mail: timo.bragge@crl.com

Juha-Sampo Suomalainen

Department of Clinical Radiology,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland
e-mail: juha-sampo.suomalainen@kuh.fi

Markus K. H. Malo

Department of Applied Physics,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland
e-mail: markus.malo@uef.fi

Sari Venesmaa

Department of Surgery,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland;
Department of Gastrointestinal Surgery,
Kuopio University Hospital,
P.O. Box 100,
Kuopio FI-70029, Finland
e-mail: sari.venesmaa@kuh.fi

Pirjo Käkelä

Department of Surgery,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland;
Department of Gastrointestinal Surgery,
Kuopio University Hospital,
P.O. Box 100,
Kuopio FI-70029, Finland
e-mail: pirjo.kakela@kuh.fi

Jussi Pihlajamäki

Department of Public Health and
Clinical Nutrition,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland;
Clinical Nutrition and Obesity Center,
Kuopio University Hospital,
P.O. Box 100,
Kuopio FI-70029, Finland
e-mail: jussi.pihlajamaki@kuh.fi

Pasi A. Karjalainen

Department of Applied Physics,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland
e-mail: pasi.karjalainen@uef.fi

Jari P. Arokoski

Department of Physical and Rehabilitation
Medicine,
Helsinki University Hospital,
P.O. Box 349,
Helsinki FI-00029, Finland;
University of Helsinki,
P.O. Box 3,
Helsinki FI-00014, Finland
e-mail: jari.arokoski@hus.fi

Rami K. Korhonen

Department of Applied Physics,
University of Eastern Finland,
P.O. Box 1627,
Kuopio FI-70211, Finland;
Diagnostic Imaging Centre,
Kuopio University Hospital,
P.O. Box 100,
Kuopio FI-70029, Finland
e-mail: rami.korhonen@uef.fi

1Corresponding author.

Manuscript received May 11, 2017; final manuscript received October 24, 2017; published online February 5, 2018. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 140(4), 041008 (Feb 05, 2018) (11 pages) Paper No: BIO-17-1206; doi: 10.1115/1.4038330 History: Received May 11, 2017; Revised October 24, 2017

The objective of the study was to investigate the effects of bariatric surgery-induced weight loss on knee gait and cartilage degeneration in osteoarthritis (OA) by combining magnetic resonance imaging (MRI), gait analysis, finite element (FE) modeling, and cartilage degeneration algorithm. Gait analyses were performed for obese subjects before and one-year after the bariatric surgery. FE models were created before and after weight loss for those subjects who did not have severe tibio-femoral knee cartilage loss. Knee cartilage degenerations were predicted using an adaptive cartilage degeneration algorithm which is based on cumulative overloading of cartilage, leading to iteratively altered cartilage properties during OA. The average weight loss was 25.7±11.0 kg corresponding to a 9.2±3.9 kg/m2 decrease in body mass index (BMI). External knee rotation moment increased, and minimum knee flexion angle decreased significantly (p < 0.05) after weight loss. Moreover, weight loss decreased maximum cartilage degeneration by 5±23% and 13±11% on the medial and lateral tibial cartilage surfaces, respectively. Average degenerated volumes in the medial and lateral tibial cartilage decreased by 3±31% and 7±32%, respectively, after weight loss. However, increased degeneration levels could also be observed due to altered knee kinetics. The present results suggest that moderate weight loss changes knee kinetics and kinematics and can slow-down cartilage degeneration for certain patients. Simulation results also suggest that prediction of cartilage degeneration is subject-specific and highly depend on the altered gait loading, not just the patient's weight.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Seedhom, B. B. , 2006, “ Conditioning of Cartilage During Normal Activities Is an Important Factor in the Development of Osteoarthritis,” Rheumatology, 45(2), pp. 146–149. [CrossRef] [PubMed]
Jiang, L. , Tian, W. , Wang, Y. , Rong, J. , Bao, C. , Liu, Y. , Zhao, Y. , and Wang, C. , 2012, “ Body Mass Index and Susceptibility to Knee Osteoarthritis: A Systematic Review and Meta-Analysis,” Jt. Bone Spine, 79(3), pp. 291–297. [CrossRef]
Miller, R. H. , Brent Edwards, W. , Brandon, S. C. E. , Morton, A. M. , and Deluzio, K. J. , 2014, “ Why Don't Most Runners Get Knee Osteoarthritis? A Case for Per-Unit-Distance Loads,” Med. Sci. Sports Exercise, 46(3), pp. 572–579. [CrossRef]
WHO, 2014, “ Global Status Report on Noncommunicable Diseases,” World Health Organization, Geneva, Switzerland, Report.
Muthuri, S. G. , Hui, M. , Doherty, M. , and Zhang, W. , 2011, “ What If We Prevent Obesity? Risk Reduction in Knee Osteoarthritis Estimated Through a Meta-Analysis of Observational Studies,” Arthritis Care Res., 63(7), pp. 982–990. [CrossRef]
Atukorala, I. , Makovey, J. , Lawler, L. , Messier, S. P. , Bennell, K. , and Hunter, D. J. , 2016, “ Is There a Dose-Response Relationship Between Weight Loss and Symptom Improvement in Persons With Knee Osteoarthritis?,” Arthritis Care Res., 68(8), pp. 1106–1114. [CrossRef]
Hortobágyi, T. , Herring, C. , Pories, W. J. , Rider, P. , and Devita, P. , 2011, “ Massive Weight Loss-Induced Mechanical Plasticity in Obese Gait,” J. Appl. Physiol., 111(5), pp. 1391–1399. [CrossRef] [PubMed]
Messier, S. P. , Gutekunst, D. J. , Davis, C. , and DeVita, P. , 2005, “ Weight Loss Reduces Knee-Joint Loads in Overweight and Obese Older Adults With Knee Osteoarthritis,” Arthritis Rheum., 52(7), pp. 2026–2032. [CrossRef] [PubMed]
Messier, S. P. , Pater, M. , Beavers, D. P. , Legault, C. , Loeser, R. F. , Hunter, D. J. , and DeVita, P. , 2014, “ Influences of Alignment and Obesity on Knee Joint Loading in Osteoarthritic Gait,” Osteoarthr. Cartil., 22(7), pp. 912–917. [CrossRef] [PubMed]
Aaboe, J. , Bliddal, H. , Messier, S. P. , Alkjær, T. , and Henriksen, M. , 2011, “ Effects of an Intensive Weight Loss Program on Knee Joint Loading in Obese Adults With Knee Osteoarthritis,” Osteoarthr. Cartil., 19(7), pp. 822–828. [CrossRef] [PubMed]
Messier, S. P. , Legault, C. , Loeser, R. F. , Van Arsdale, S. J. , Davis, C. , Ettinger, W. H. , and DeVita, P. , 2011, “ Does High Weight Loss in Older Adults With Knee Osteoarthritis Affect Bone-on-Bone Joint Loads and Muscle Forces During Walking?,” Osteoarthr. Cartil., 19(3), pp. 272–280. [CrossRef] [PubMed]
Vartiainen, P. , Bragge, T. , Lyytinen, T. , Hakkarainen, M. , Karjalainen, P. A. , and Arokoski, J. P. , 2012, “ Kinematic and Kinetic Changes in Obese Gait in Bariatric Surgery-Induced Weight Loss,” J. Biomech., 45(10), pp. 1769–1774. [CrossRef] [PubMed]
Li, X. , and Majumdar, S. , 2013, “ Quantitative MRI of Articular Cartilage and Its Clinical Applications,” J. Magn. Reson. Imaging, 38(5), pp. 991–1008. [CrossRef] [PubMed]
Liebl, H. , Joseph, G. , Nevitt, M. C. , Singh, N. , Heilmeier, U. , Subburaj, K. , Jungmann, P. M. , McCulloch, C. E. , Lynch, J. A. , Lane, N. E. , and Link, T. M. , 2015, “ Early T2 Changes Predict Onset of Radiographic Knee Osteoarthritis: Data From the Osteoarthritis Initiative,” Ann. Rheum. Dis., 74(7), pp. 1353–1359. [CrossRef] [PubMed]
Serebrakian, A. T. , Poulos, T. , Liebl, H. , Joseph, G. B. , Lai, A. , Nevitt, M. C. , Lynch, J. A. , McCulloch, C. E. , and Link, T. M. , 2015, “ Weight Loss Over 48 Months Is Associated With Reduced Progression of Cartilage T2 Relaxation Time Values: Data From the Osteoarthritis Initiative,” J. Magn. Reson. Imaging, 41(5), pp. 1272–1280. [CrossRef] [PubMed]
Mononen, M. E. , Tanska, P. , Isaksson, H. , and Korhonen, R. K. , 2016, “ A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data From the Osteoarthritis Initiative,” Sci. Rep., 6, pp. 1–14. [CrossRef] [PubMed]
Liukkonen, M. K. , Mononen, M. E. , Klets, O. , Arokoski, J. P. , Saarakkala, S. , and Korhonen, R. K. , 2017, “ Simulation of Subject-Specific Progression of Knee Osteoarthritis and Comparison to Experimental Follow-Up Data: Data From the Osteoarthritis Initiative,” Sci. Rep., 7(1), p. 9177. [CrossRef] [PubMed]
Halonen, K. S. , Mononen, M. E. , Jurvelin, J. S. , Töyräs, J. , and Korhonen, R. K. , 2013, “ Importance of Depth-Wise Distribution of Collagen and Proteoglycans in Articular Cartilage—A 3D Finite Element Study of Stresses and Strains in Human Knee Joint,” J. Biomech., 46(6), pp. 1184–1192. [CrossRef] [PubMed]
Vaziri, A. , Nayeb-Hashemi, H. , Singh, A. , and Tafti, B. A. , 2008, “ Influence of Meniscectomy and Meniscus Replacement on the Stress Distribution in Human Knee Joint,” Ann. Biomed. Eng., 36(8), pp. 1335–1344. [CrossRef] [PubMed]
Mow, V. C., Wei , G, Y. , and Chen, F. H. , 2005, “ Structure and Function of Articular Cartilage and Meniscus,” Basic Orthopaedic Biomechanics & Mechano-Biology, 3rd ed., V. C. Mow and R. Huiskes, eds. , Lippincott Williams & Wilkins, Philadelphia, PA, pp. 181–258.
Danso, E. K. , Mäkelä, J. T. A. , Tanska, P. , Mononen, M. E. , Honkanen, J. T. J. , Jurvelin, J. S. , Töyräs, J. , Julkunen, P. , and Korhonen, R. K. , 2015, “ Characterization of Site-Specific Biomechanical Properties of Human Meniscus—Importance of Collagen and Fluid on Mechanical Nonlinearities,” J. Biomech., 48(8), pp. 1499–1507. [CrossRef] [PubMed]
Goertzen, D. J. , Budney, D. R. , and Cinats, J. G. , 1997, “ Methodology and Apparatus to Determine Material Properties of the Knee Joint Meniscus,” Med. Eng. Phys., 19(5), pp. 412–419. [CrossRef] [PubMed]
Tanska, P. , Mononen, M. E. , and Korhonen, R. K. , 2015, “ A Multi-Scale Finite Element Model for Investigation of Chondrocyte Mechanics in Normal and Medial Meniscectomy Human Knee Joint During Walking,” J. Biomech., 48(8), pp. 1397–1406. [CrossRef] [PubMed]
Kłodowski, A. , Mononen, M. E. , Kulmala, J. P. , Antti, V. , Korhonen, R. K. , Janne, A. , Ilkka, K. , Jurvelin, J. S. , and Mikkola, A. , 2015, “ Merge of Motion Analysis, Multibody Dynamics and Finite Element Method for the Subject-Specific Analysis of Cartilage Loading Patterns During Gait: Differences Between Rotation and Moment-Driven Models of Human Knee Joint,” Multibody Syst. Dyn., 37(3), pp. 271–290.
Klets, O. , Mononen, M. E. , Tanska, P. , Nieminen, M. T. , Korhonen, R. K. , and Saarakkala, S. , 2016, “ Comparison of Different Material Models of Articular Cartilage in 3D Computational Modeling of the Knee: Data From the Osteoarthritis Initiative (OAI),” J. Biomech., 49(16), pp. 3891–3900. [CrossRef] [PubMed]
Wilson, W. , van Donkelaar, C. C. , van Rietbergen, B. , Ito, K. , and Huiskes, R. , 2004, “ Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study,” J. Biomech., 37(3), pp. 357–366. [CrossRef] [PubMed]
Gantoi, F. M. , Brown, M. A. , and Shabana, A. A. , 2013, “ Finite Element Modeling of the Contact Geometry and Deformation in Biomechanics Applications,” ASME J. Comput. Nonlinear Dyn., 8(4), p. 041013. [CrossRef]
Halonen, K. S. , Mononen, M. E. , Jurvelin, J. S. , and Korhonen, R. K. , 2017, “ Importance Patella, Quadriceps Forces, and Depthwise Cartilage Structure on Knee Joint Motion and Cartilage Response During Gait,” J. Biomech. Eng., 138(7), pp. 1–11.
Kutzner, I. , Heinlein, B. , Graichen, F. , Bender, A. , Rohlmann, A. , Halder, A. , Beier, A. , and Bergmann, G. , 2010, “ Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects,” J. Biomech., 43(11), pp. 2164–2173. [CrossRef] [PubMed]
Heinlein, B. , Kutzner, I. , Graichen, F. , Bender, A. , Rohlmann, A. , Halder, A. M. , Beier, A. , and Bergmann, G. , 2009, “ ESB Clinical Biomechanics Award 2008: Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured In Vivo With a Follow-Up of 6-10 Months,” Clin. Biomech., 24(4), pp. 315–326. [CrossRef]
Adouni, M. , Shirazi-Adl, A. , and Shirazi, R. , 2012, “ Computational Biodynamics of Human Knee Joint in Gait: From Muscle Forces to Cartilage Stresses,” J. Biomech., 45(12), pp. 2149–2156. [CrossRef] [PubMed]
Kozanek, M. , Ali, H. , Fang, L. , Van de Velde, S. K. , Gill, T. J. , Rubash, H. E. , and Li, G. , 2009, “ Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait,” J. Biomech., 42(12), pp. 1877–1884. [CrossRef] [PubMed]
Danso, E. K. , Honkanen, J. T. J. , Saarakkala, S. , and Korhonen, R. K. , 2014, “ Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus,” J. Biomech., 47(1), pp. 200–206. [CrossRef] [PubMed]
Buckwalter, J. A. , and Martin, J. , 1995, “ Degenerative Joint Disease,” Clin. Symp., 47(2), pp. 1–32. [PubMed]
Mononen, M. E. , Mikkola, M. T. , Julkunen, P. , Ojala, R. , Nieminen, M. T. , Jurvelin, J. S. , and Korhonen, R. K. , 2012, “ Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics—A 3D Finite Element Analysis,” J. Biomech., 45(3), pp. 579–587. [CrossRef] [PubMed]
Mäkelä, J. T. A. , Rezaeian, Z. S. , Mikkonen, S. , Madden, R. , Han, S. K. , Jurvelin, J. S. , Herzog, W. , and Korhonen, R. K. , 2014, “ Site-Dependent Changes in Structure and Function of Lapine Articular Cartilage 4 Weeks After Anterior Cruciate Ligament Transection,” Osteoarthr. Cartil., 22(6), pp. 869–878. [CrossRef] [PubMed]
Gulati, A. , Chau, R. , Beard, D. J. , Price, A. J. , Gill, H. S. , and Murray, D. W. , 2009, “ Localization of the Full-Thickness Cartilage Lesions in Medial and Lateral Unicompartmental Knee Osteoarthritis,” J. Orthop. Res., 27(10), pp. 1339–1346. [CrossRef] [PubMed]
Boyd, J. L. , Zavatsky, A. B. , and Gill, H. S. , 2016, “ Does Increasing Applied Load Lead to Contact Changes Indicative of Knee Osteoarthritis? A Subject-Specific FEA Study,” Int. J. Numer. Method. Biomed. Eng., 32(4), p. e02740.
Hill, C. L. , Gale, D. G. , Chaisson, C. E. , Skinner, K. , Kazis, L. , Gale, M. E. , and Felson. D. T. , 2001, “ Knee Effusions, Popliteal Cysts, and Synovial Thickening: Association With Knee Pain in Osteoarthritis,” J. Rheumatol., 28(6), pp. 1330–1337. [PubMed]
Mundermann, A. , Dyrby, C. O. , D'Lima, D. D. , Colwell, C. W. , and Andriacchi, T. P. , 2008, “ In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement,” J. Orthop. Res., 26(9), pp. 1167–1172. [CrossRef] [PubMed]
Thambyah, A. , Goh, J. C. H. , and Das De, S. , 2005, “ Contact Stresses in the Knee Joint in Deep Flexion,” Med. Eng. Phys., 27(4), pp. 329–335. [CrossRef] [PubMed]
Metcalfe, A. , Stewart, C. , Postans, N. , Barlow, D. , Dodds, A. , Holt, C. , Whatling, G. , and Roberts, A. , 2013, “ Abnormal Loading of the Major Joints in Knee Osteoarthritis and the Response to Knee Replacement,” Gait Posture, 37(1), pp. 32–36. [CrossRef] [PubMed]
Sjöström, L. , Lindroos, A.-K. , Peltonen, M. , Torgerson, J. , Bouchard, C. , Carlsson, B. , Dahlgren, S. , Larsson , B., Narbro, K. , Sjöström, C. D. , Sullivan, M. , and Wedel, H. , 2004, “ Lifestyle, Diabetes, and Cardiovascular Risk Factors 10 Years After Bariatric Surgery,” N. Engl. J. Med., 351, pp. 2683–2693. [CrossRef] [PubMed]
Kempson, G. E. , 1982, “ Relationship Between the Tensile Properties of Articular Cartilage From the Human Knee and Age,” Ann. Rheum. Dis., 41(5), pp. 508–511. [CrossRef] [PubMed]
Gregor, M. F. , and Hotamisligil, G. S. , 2011, “ Inflammatory Mechanisms in Obesity,” Annu. Rev. Immunol., 29, pp. 415–445. [CrossRef] [PubMed]
Collins, K. H. , Hart, D. A. , Reimer, R. A. , Seerattan, R. A. , and Herzog, W. , 2016, “ Response to Diet-Induced Obesity Produces Time-Dependent Induction and Progression of Metabolic Osteoarthritis in Rat Knees,” J. Orthop. Res., 34(6), pp. 1010–1018. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Method for the evaluation of the effect of weight loss on knee cartilage stresses and degeneration using computational FE modeling: (a) gait analysis was conducted in the motion analysis laboratory before (baseline) and one year after the surgery (weight loss) using reflective markers and force plates. Absolute GRFs, moments, and flexion–extension angle are mean values obtained from gait analysis (N = 7); (b) subject-specific knee joint geometries were generated from MR images; (c) subject-specific whole knee joint FE models were created for both time points, before and after weight loss, and cartilage degenerations were estimated using an iterative fibril degenerative algorithm published earlier [16].

Grahic Jump Location
Fig. 2

Mean ± 95% CI of normalized GRFs and moments, and flexion–extension angle obtained from gait analysis (N = 7). Wilcoxon signed-rank test was used for statistical comparison. The level of significance was set at p < 0.05.

Grahic Jump Location
Fig. 3

Estimated fibril degenerations from tibial cartilage surfaces before and after weight loss. Mean ± 95% CI of maximum degeneration (N = 4) during 100 iterations from (a) medial and (b) lateral tibial surface. Estimated fibril degeneration levels were compared to degeneration levels simulated for healthy (KL = 0 at the baseline and 4-yr follow-up time point) and OA (KL = 0 at the baseline and KL = 2 or 3 at the follow-up time point) groups taken from the OAI database. Maximum and average fibril degenerations of individual subjects after 100 iterations from (c,e) medial and (d,f) lateral tibial surfaces.

Grahic Jump Location
Fig. 4

Degenerated volumes of elements from tibial cartilage. (a) Mean ± 95% CI from medial and lateral tibial cartilage. Values for individual subjects from (b) medial and (c) lateral tibial cartilage. Sub = subject.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In