0
Technical Brief

Stiffness Properties of Adventitia, Media, and Full Thickness Human Atherosclerotic Carotid Arteries in the Axial and Circumferential Directions

[+] Author and Article Information
Allen H. Hoffman

Mechanical Engineering Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

Zhongzhao Teng

Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609;
Department of Radiology,
University of Cambridge,
Cambridge CB2 0QQ, UK

Jie Zheng, Pamela K. Woodard

Mallinckrodt Institute of Radiology,
Washington University,
St. Louis, MO 63110

Zheyang Wu

Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

Kristen L. Billiar

Biomedical Engineering Department,
Worcester Polytechnic Institute,
Worcester, MA 01609

Liang Wang

School of Biological Science and Medical Engineering,
Southeast University,
Nanjing 210096, China

Dalin Tang

School of Biological Science and Medical Engineering,
Southeast University,
Nanjing 210096, China;
Mathematical Sciences Department,
Worcester Polytechnic Institute,
Worcester, MA 01609
e-mail: dtang@wpi.edu

1Corresponding author.

Manuscript received April 19, 2017; final manuscript received August 13, 2017; published online September 28, 2017. Assoc. Editor: Guy M. Genin.

J Biomech Eng 139(12), 124501 (Sep 28, 2017) (6 pages) Paper No: BIO-17-1163; doi: 10.1115/1.4037794 History: Received April 19, 2017; Revised August 13, 2017

Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Williamson, S. D. , Lam, Y. , Younis, H. F. , Huang, H. , Patel, S. , Kaazempur-Mofrad, M. R. , and Kamm, R. D. , 2003, “ On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties,” ASME J. Biomech. Eng., 125(1), pp. 147–155. [CrossRef]
Tang, D. , Yang, C. , Zheng, J. , Woodard, P. K. , Saffitz, J. E. , Sicard, G. A. , Pilgram, T. K. , and Yuan, C. , 2005, “ Quantifying Effects of Plaque Structure and Material Properties on Stress Behaviors in Human Atherosclerotic Plaques Using 3D FSI Models,” ASME J. Biomech. Eng., 127(7), pp. 1185–1194. [CrossRef]
Tang, D. , Teng, Z. , Canton, G. , Yang, C. , Ferguson, M. , Huang, X. , Zheng, J. , Woodard, P. K. , and Yuan, C. , 2009, “ Sites of Rupture in Human Atherosclerotic Carotid Plaques Are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study,” Stroke, 40(10), pp. 3258–3263. [CrossRef] [PubMed]
Holzapfel, G. A. , Sommer, G. , and Regitnig, P. , 2004, “ Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques,” ASME J. Biomech. Eng., 126(5), pp. 657–665. [CrossRef]
Lendon, C. L. , Davies, M. J. , Richardson, P. D. , and Born, G. V. , 1993, “ Testing of Small Connective Tissue Specimens for the Determination of the Mechanical Behavior of Atherosclerotic Plaques,” J. Biomed. Eng., 15(1), pp. 27–33. [CrossRef] [PubMed]
Loree, H. M. , Grodzinsky, A. J. , Park, S. Y. , Gibson, L. J. , and Lee, R. T. , 1994, “ Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue,” J. Biomech., 27(2), pp. 195–204. [CrossRef] [PubMed]
Maher, E. , Creane, A. , Sultan, S. , Hynes, N. , Lally, C. , and Kelly, D. J. , 2009, “ Tensile and Compressive Properties of Fresh Human Carotid Atherosclerotic Plaques,” J. Biomech., 42(16), pp. 2760–2767. [CrossRef] [PubMed]
Teng, Z. , Zhang, Y. , Huang, Y. , Feng, J. , Yuan, J. , Lu, Q. , Sutcliffe, M. P. , Brown, A. J. , Jing, Z. , and Gillard, J. H. , 2014, “ Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study,” Acta Biomater., 10(12), pp. 5055–5063. [CrossRef] [PubMed]
Cheng, G. C. , Loree, H. M. , Kamm, R. D. , Fishbein, M. C. , and Lee, R. T. , 1993, “ Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation,” Circulation, 87(4), pp. 1179–1187. [CrossRef] [PubMed]
Li, Z. Y. , Howarth, S. , Trivedi, R. A. , U-King-Um, J. M. , Graves, M. J. , Brown, A. , Wang, L. Q. , and Gillard, J. H. , 2006, “ Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI,” J. Biomech., 39(14), pp. 2611–2622. [CrossRef] [PubMed]
Sadat, U. , Teng, Z. , Young, V. E. , Walsh, S. R. , Li, Z. Y. , Graves, M. J. , Varty, K. , and Gillard, J. H. , 2010, “ Association Between Biomechanical Structural Stresses of Atherosclerotic Carotid Plaques and Subsequent Ischaemic Cerebrovascular Events—A Longitudinal In Vivo Magnetic Resonance Imaging-Based Finite Element Study,” Eur. J. Vasc. Endovascular Surg., 40(4), pp. 485–491. [CrossRef]
Fung, Y. C. , 1993, Biomechanics—Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York, pp. 322–326; 349–352.
Silver, F. H. , Snowhill, P. B. , and Foran, D. J. , 2003, “ Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava and Carotid Artery,” Ann. Biomed. Eng., 31(7), pp. 793–803. [CrossRef] [PubMed]
Holzapfel, G. A. , Stadler, M. , and Schulze-Bauer, C. A. J. , 2002, “ A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing,” Ann. Biomed. Eng., 30(6), pp. 753–767. [CrossRef] [PubMed]
Learoyd, B. M. , and Taylor, M. G. , 1966, “ Alterations With Age in the Viscoelastic Properties of Human Arterial Walls,” Circ. Res., 18(3), pp. 278–292. [CrossRef] [PubMed]
Dobrin, P. R. , 1986, “ Biaxial Anisotropy of Dog Carotid Artery: Estimation of Circumferential Elastic Modulus,” J. Biomech., 19(5), pp. 351–358. [CrossRef] [PubMed]
Dobrin, P. B. , and Canfield, T. R. , 1984, “ Elastase, Collagenase, and the Biaxial Elastic Properties of Dog Carotid Artery,” Am. J. Physiol., 247(1), pp. H124–H131. [PubMed]
Weizsacker, H. W. , Lambert, H. , and Pascale, K. , 1983, “ Analysis of the Passive Mechanical Properties of Rat Carotid Arteries,” J. Biomech., 16(9), pp. 703–715. [CrossRef] [PubMed]
Nagaraj, A. , Kim, H. , Hamilton, A. J. , Mun, J. H. , Smulevitz, B. , Kane, B. J. , Yan, L. L. , Roth, S. I. , McPherson, D. D. , and Chandran, K. B. , 2005, “ Porcine Carotid Arterial Material Property Alterations With Induced Atheroma: An In Vivo Study,” Med. Eng. Phys., 27(2), pp. 147–156. [CrossRef] [PubMed]
Richardson, P. D. , 2002, “ Biomechanics of Plaque Rupture: Progress, Problems and New Frontiers,” Ann. Biomed. Eng., 30(4), pp. 524–536. [CrossRef] [PubMed]
Teng, Z. , Tang, D. , Zheng, J. , Woodard, P. K. , and Hoffman, A. H. , 2009, “ An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in the Circumferential and Axial Directions,” J. Biomech., 42(15), pp. 2535–2539. [CrossRef] [PubMed]
von Maltzahn, W. W. , and Keitz, E. B. , 1984, “ Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries,” J. Biomech., 17(11), pp. 839–847. [CrossRef] [PubMed]
Cai, J. M. , Hatsukami, T. S. , Ferguson, M. S. , Small, R. , Polissar, N. L. , and Yuan, C. , 2002, “ Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging,” Circulation, 106(11), pp. 1368–1373. [CrossRef] [PubMed]
Yang, C. , Tang, D. , Yuan, C. , Hatsukami, T. S. , Zheng, J. , and Woodard, P. K. , 2007, “ In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared With Fluid/Wall-Only Models,” Comput. Model. Eng. Sci., 19(3), pp. 233–245. [PubMed]
Delfino, A. , Stergiopulos, N. , Moore, J. E. , and Meister, J. J. , 1997, “ Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation,” J. Biomech., 30(8), pp. 777–786. [CrossRef] [PubMed]
Takamizawa, K. , and Hayashi, K. , 1987, “ Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics,” J. Biomech., 20(1), pp. 7–17. [CrossRef] [PubMed]
Holzapfel, G. A. , 2006, “ Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure,” J. Theor. Biol., 238(2), pp. 290–302. [CrossRef] [PubMed]
von Maltzahn, W. W. , Besdo, D. , and Wiemer, W. , 1981, “ Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model,” J. Biomech., 14(6), pp. 389–397. [CrossRef] [PubMed]
Weizsacker, H. W. , and Pinto, J. G. , 1988, “ Isotropy and Anisotropy of the Arterial Wall,” J. Biomech., 21(6), pp. 477–487. [CrossRef] [PubMed]
Kroon, M. , and Holzapfel, G. A. , 2008, “ A New Constitutive Model for Multi-Layered Collagenous Tissues,” J. Biomech., 41(12), pp. 2766–2771. [CrossRef] [PubMed]
Masson, I. , Boutouyrie, P. , Laurant, S. , Humphrey, J. D. , and Zidi, M. , 2008, “ Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data,” J. Biomech., 41(12), pp. 2618–2627. [CrossRef] [PubMed]
Ugural, A. C. , and Fenster, S. K. , 1995, Advanced Strength and Applied Elasticity, 3rd ed., Prentice Hall, Englewood Cliffs, NJ, pp. 327–340.
Reneman, R. S. , van Merode, T. , Hick, P. , Muutjens, A. M. M. , and Hoeks, A. P. G. , 1986, “ Age-Related Changes in Carotid Artery Wall Properties in Men,” Ultrasound Med. Biol., 12(6), pp. 465–471. [CrossRef] [PubMed]
Schulze-Bauer, C. A. J. , Morth, C. , and Holzapfel, G. A. , 2003, “ Passive Biaxial Mechanical Response of Aged Human Iliac Arteries,” ASME J. Biomech. Eng., 125(3), pp. 395–406. [CrossRef]
Humphrey, J. D. , Eberth, J. F. , Dye, W. W. , and Gleason, R. L. , 2009, “ Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries,” J. Biomech., 42(1), pp. 1–8. [CrossRef] [PubMed]
Cecelja, M. , and Chowienczyk, P. , 2012, “ Role of Arterial Stiffness in Cardiovascular Disease,” JRSM Cardiovasc. Dis., 1(4), pp. 1–10.
Teng, Z. , Feng, J. , Zhang, Y. , Sutcliffe, M. P. F. , Huang, Y. , Brown, A. J. , Jing, Z. , Lu, Q. , and Gillard, J. H. , 2015, “ A Uni-Extension Study on the Ultimate Material Strength and Extreme Extensibility of Atherosclerotic Tissue in Human Carotid Plaques,” J. Biomech., 48(14), pp. 3859–3867. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Specimen preparation. Four axial strips and four circumferential rings were dissected from each artery. Two strips and two rings were further dissected to create paired adventitia and media specimens.

Grahic Jump Location
Fig. 2

Stress–strain plots from a single artery (F, age 80): (a) axial specimens. AA: axial adventitia; AM: axial media; and AI: axial intact. (b) Circumferential specimens. CA: circumferential adventitia; CM: circumferential media; and CI: circumferential intact.

Grahic Jump Location
Fig. 3

Stiffness data from six human atherosclerotic carotid arteries. AA: axial adventitia; AM: axial media; CA: circumferential adventitia; CM: circumferential media; AI: axial intact; and CI: circumferential intact.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In