0
Technical Brief

Structural and Chemical Modification to Improve Adhesive and Material Properties of Fibrin-Genipin for Repair of Annulus Fibrosus Defects in Intervertebral Disks

[+] Author and Article Information
Michelle A. Cruz, Steven McAnany, Rose G. Long, Philip Nasser, Andrew C. Hecht, Svenja Illien-Junger

Leni and Peter W. May Department of Orthopaedics,
Icahn School of Medicine at Mount Sinai,
One Gustave L. Levy Place, Box 1188,
New York, NY 10029

Nikita Gupta

Department of Otolaryngology,
Icahn School of Medicine at Mount Sinai,
One Gustave L. Levy Place, Box 1189,
New York, NY 10029

David Eglin

Biomaterials and Tissue Engineering,
AO Research Institute Davos,
Davos CH-7270, Switzerland

James C. Iatridis

Leni and Peter W. May Department of Orthopaedics,
Icahn School of Medicine at Mount Sinai,
One Gustave L. Levy Place, Box 1188,
New York, NY 10029
e-mail: james.iatridis@mssm.edu

1Corresponding author.

Manuscript received June 8, 2016; final manuscript received March 9, 2017; published online June 7, 2017. Assoc. Editor: David Corr.

J Biomech Eng 139(8), 084501 (Jun 07, 2017) (7 pages) Paper No: BIO-16-1241; doi: 10.1115/1.4036623 History: Received June 08, 2016; Revised March 09, 2017

Annulus fibrosus (AF) defects from intervertebral disk (IVD) herniation and degeneration are commonly associated with back pain. Genipin-crosslinked fibrin hydrogel (FibGen) is an injectable, space-filling AF sealant that was optimized to match AF shear properties and partially restored IVD biomechanics. This study aimed to enhance mechanical behaviors of FibGen to more closely match AF compressive, tensile, and shear properties by adjusting genipin crosslink density and by creating a composite formulation by adding Poly(D,L-lactide-co-glycolide) (PDLGA). This study also evaluated effects of thrombin concentration and injection technique on gelation kinetics and adhesive strength. Increasing FibGen genipin concentration from 1 to 36 mg/mL significantly increased adhesive strength (∼5 to 35 kPa), shear moduli (∼10 to 110 kPa), and compressive moduli (∼25 to 150 kPa) with concentration-dependent effects, and spanning native AF properties. Adding PDLGA to FibGen altered the material microstructure on electron microscopy and nearly tripled adhesive strength, but did not increase tensile moduli, which remained nearly 5× below native AF, and had a small increase in shear moduli and significantly decreased compressive moduli. Increased thrombin concentration decreased gelation rate to < 5 min and injection methods providing a structural FibGen cap increased pushout strength by ∼40%. We conclude that FibGen is highly modifiable with tunable mechanical properties that can be formulated to be compatible with human AF compressive and shear properties and gelation kinetics and injection techniques compatible with clinical discectomy procedures. However, further innovations, perhaps with more efficient fiber reinforcement, will be required to enable FibGen to match AF tensile properties.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hoy, D. , March, L. , Brooks, P. , Blyth, F. , Woolf, A. , Bain, C. , Williams, G. , Smith, E. , Vos, T. , Barendregt, J. , Murray, C. , Burstein, R. , and Buchbinder, R. , 2014, “ The Global Burden of Low Back Pain: Estimates From the Global Burden of Disease 2010 Study,” Ann. Rheum. Dis., 73(6), pp. 968–974. [CrossRef] [PubMed]
Vos, T. , Flaxman, A. D. , Naghavi, M. , Lozano, R. , Michaud, C. , Ezzati, M. , Shibuya, K. , Salomon, J. A. , Abdalla, S. , Aboyans, V. , Abraham, J. , Ackerman, I. , Aggarwal, R. , Ahn, S. Y. , Ali, M. K. , AlMazroa, M. A. , Alvarado, M. , Anderson, H. R. , Anderson, L. M. , Andrews, K. G. , Atkinson, C. , Baddour, L. M. , Bahalim, A. N. , Barker-Collo, S. , Barrero, L. H. , Bartels, D. H. , Basáñez, M.-G. , Baxter, A. , Bell, M. L. , Benjamin, E. J. , Bennett, D. , Bernabé, E. , Bhalla, K. , Bhandari, B. , Bikbov, B. , Abdulhak, A. B. , Birbeck, G. , Black, J. A. , Blencowe, H. , Blore, J. D. , Blyth, F. , Bolliger, I. , Bonaventure, A. , Boufous, S. , Bourne, R. , Boussinesq, M. , Braithwaite, T. , Brayne, C. , Bridgett, L. , Brooker, S. , Brooks, P. , Brugha, T. S. , Bryan-Hancock, C. , Bucello, C. , Buchbinder, R. , Buckle, G. , Budke, C. M. , Burch, M. , Burney, P. , Burstein, R. , Calabria, B. , Campbell, B. , Canter, C. E. , Carabin, H. , Carapetis, J. , Carmona, L. , Cella, C. , Charlson, F. , Chen, H. , Tai-Ann Cheng, A. , Chou, D. , Chugh, S. S. , Coffeng, L. E. , Colan, S. D. , Colquhoun, S. , Colson, K. E. , Condon, J. , Connor, M. D. , Cooper, L. T. , Corriere, M. , Cortinovis, M. , de Vaccaro, K. C. , Couser, W. , Cowie, B. C. , Criqui, M. H. , Cross, M. , Dabhadkar, K. C. , Dahiya, M. , Dahodwala, N. , Damsere-Derry, J. , Danaei, G. , Davis, A. , De Leo, D. , Degenhardt, L. , Dellavalle, R. , Delossantos, A. , Denenberg, J. , Derrett, S. , Des Jarlais, D. C. , Dharmaratne, S. D. , Dherani, M. , Diaz-Torne, C. , Dolk, H. , Dorsey, E. R. , Driscoll, T. , Duber, H. , Ebel, B. , Edmond, K. , Elbaz, A. , Ali, S. E. , Erskine, H. , Erwin, P. J. , Espindola, P. , Ewoigbokhan, S. E. , Farzadfar, F. , Feigin, V. , Felson, D. T. , Ferrari, A. , Ferri, C. P. , Fèvre, E. M. , Finucane, M. M. , Flaxman, S. , Flood, L. , Foreman, K. , Forouzanfar, M. H. , Fowkes, F. G. R. , Franklin, R. , Fransen, M. , Freeman, M. K. , Gabbe, B. J. , Gabriel, S. E. , Gakidou, E. , Ganatra, H. A. , Garcia, B. , Gaspari, F. , Gillum, R. F. , Gmel, G. , Gosselin, R. , Grainger, R. , Groeger, J. , Guillemin, F. , Gunnell, D. , Gupta, R. , Haagsma, J. , Hagan, H. , Halasa, Y. A. , Hall, W. , Haring, D. , Haro, J. M. , Harrison, J. E. , Havmoeller, R. , Hay, R. J. , Higashi, H. , Hill, C. , Hoen, B. , Hoffman, H. , Hotez, P. J. , Hoy, D. , Huang, J. J. , Ibeanusi, S. E. , Jacobsen, K. H. , James, S. L. , Jarvis, D. , Jasrasaria, R. , Jayaraman, S. , Johns, N. , Jonas, J. B. , Karthikeyan, G. , Kassebaum, N. , Kawakami, N. , Keren, A. , Khoo, J.-P. , King, C. H. , Knowlton, L. M. , Kobusingye, O. , Koranteng, A. , Krishnamurthi, R. , Lalloo, R. , Laslett, L. L. , Lathlean, T. , Leasher, J. L. , Lee, Y. Y. , Leigh, J. , Lim, S. S. , Limb, E. , Lin, J. K. , Lipnick, M. , Lipshultz, S. E. , Liu, W. , Loane, M. , Ohno, S. L. , Lyons, R. , Ma, J. , Mabweijano, J. , MacIntyre, M. F. , Malekzadeh, R. , Mallinger, L. , Manivannan, S. , Marcenes, W. , March, L. , Margolis, D. J. , Marks, G. B. , Marks, R. , Matsumori, A. , Matzopoulos, R. , Mayosi, B. M. , McAnulty, J. H. , McDermott, M. M. , McGill, N. , McGrath, J. , Medina-Mora, M. E. , Meltzer, M. , Memish, Z. A. , Mensah, G. A. , Merriman, T. R. , Meyer, A.-C. , Miglioli, V. , Miller, M. , Miller, T. R. , Mitchell, P. B. , Mocumbi, A. O. , Moffitt, T. E. , Mokdad, A. A. , Monasta, L. , Montico, M. , Moradi-Lakeh, M. , Moran, A. , Morawska, L. , Mori, R. , Murdoch, M. E. , Mwaniki, M. K. , Naidoo, K. , Nair, M. N. , Naldi, L. , Venkat Narayan, K. M. , Nelson, P. K. , Nelson, R. G. , Nevitt, M. C. , Newton, C. R. , Nolte, S. , Norman, P. , Norman, R. , O'Donnell, M. , O'Hanlon, S. , Olives, C. , Omer, S. B. , Ortblad, K. , Osborne, R. , Ozgediz, D. , Page, A. , Pahari, B. , Durai Pandian, J. , Panozo Rivero, A. , Patten, S. B. , Pearce, N. , Padilla, R. P. , Perez-Ruiz, F. , Perico, N. , Pesudovs, K. , Phillips, D. , Phillips, M. R. , Pierce, K. , Pion, S. , Polanczyk, G. V. , Polinder, S. , Arden Pope, C., III , Popova, S. , Porrini, E. , Pourmalek, F. , Prince, M. , Pullan, R. L. , Ramaiah, K. D. , Ranganathan, D. , Razavi, H. , Regan, M. , Rehm, J. T. , Rein, D. B. , Remuzzi, G. , Richardson, K. , Rivara, F. P. , Roberts, T. , Robinson, C. , De Leòn, F. R. , Ronfani, L. , Room, R. , Rosenfeld, L. C. , Rushton, L. , Sacco, R. L. , Saha, S. , Sampson, U. , Sanchez-Riera, L. , Sanman, E. , Schwebel, D. C. , Scott, J. G. , Segui-Gomez, M. , Shahraz, S. , Shepard, D. S. , Shin, H. , Shivakoti, R. , Silberberg, D. , Singh, D. , Singh, G. M. , Singh, J. A. , Singleton, J. , Sleet, D. A. , Sliwa, K. , Smith, E. , Smith, J. L. , Stapelberg, N. J. C. , Steer, A. , Steiner, T. , Stolk, W. A. , Jacob Stovner, L. , Sudfeld, C. , Syed, S. , Tamburlini, G. , Tavakkoli, M. , Taylor, H. R. , Taylor, J. A. , Taylor, W. , Thomas, B. , Thomson, W. M. , Thurston, G. D. , Tleyjeh, I. M. , Tonelli, M. , Towbin, J. A. , Truelsen, T. , Tsilimbaris, M. K. , Ubeda, C. , Undurraga, E. A. , van der Werf, M. J. , van Os, J. , Vavilala, M. S. , Venketasubramanian, N. , Wang, M. , Wang, W. , Watt, K. , Weatherall, D. J. , Weinstock, M. A. , Weintraub, R. , Weisskopf, M. G. , Weissman, M. M. , White, R. A. , Whiteford, H. , Wiersma, S. T. , Wilkinson, J. D. , Williams, H. C. , Williams, S. R. M. , Witt, E. , Wolfe, F. , Woolf, A. D. , Wulf, S. , Yeh, P.-H. , Zaidi, A. K. M. , Zheng, Z.-J. , Zonies, D. , Lopez, A. D. , and Murray, C. J. L. , 2012, “ Years Lived With Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010,” Lancet, 380(9859), pp. 2163–2196. [CrossRef] [PubMed]
Watkins-Castillo, S. , and Andersson, G. , 2014, “ United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States (BMUS),” BMUS, Rosemont, IL, accessed May 8, 2017, http://www.boneandjointburden.org
Adams, M. A. , and Dolan, P. , 2012, “ Intervertebral Disc Degeneration: Evidence for Two Distinct Phenotypes,” J. Anat., 221(6), pp. 497–506. [CrossRef] [PubMed]
Li, Z. , Liu, H. , Yang, H. , Wang, J. , Wang, H. , Zhang, K. , Ding, W. , and Zheng, Z. , 2014, “ Both Expression of Cytokines and Posterior Annulus Fibrosus Rupture Are Essential for Pain Behavior Changes Induced by Degenerative Intervertebral Disc: An Experimental Study in Rats,” J. Orthop. Res., 32(2), pp. 262–272. [CrossRef] [PubMed]
Sharifi, S. , Bulstra, S. K. , Grijpma, D. W. , and Kuijer, R. , 2015, “ Treatment of the Degenerated Intervertebral Disc; Closure, Repair and Regeneration of the Annulus Fibrosus,” J. Tissue Eng. Regener. Med., 9(10), pp. 1120–1132. [CrossRef]
Jensen, M. , Brant-Zawadzki, M. , Obuchowski, N. , Modic, M. , Malkasian, D. , and Ross, J. , 1994, “ Magnetic Resonance Imaging of the Lumbar Spine in People Without Back Pain,” N. Engl. J. Med., 331(2), pp. 69–73. [CrossRef] [PubMed]
Iatridis, J. C. , Nicoll, S. B. , Michalek, A. J. , Walter, B. A. , and Gupta, M. S. , 2013, “ Role of Biomechanics in Intervertebral Disc Degeneration and Regenerative Therapies: What Needs Repairing in the Disc and What Are Promising Biomaterials for Its Repair?,” Spine J., 13(3), pp. 243–262. [CrossRef] [PubMed]
Lee, C. K. , 1988, “ Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion,” Spine, 13(3), pp. 375–377. [CrossRef] [PubMed]
McGirt, M. J. , Garcés Ambrossi, G. L. , Datoo, G. , Sciubba, D. M. , Witham, T. F. , Wolinsky, J. P. , Gokaslan, Z. L. , and Bydon, A. , 2009, “ Recurrent Disc Herniation and Long-Term Back Pain After Primary Lumbar Discectomy: Review of Outcomes Reported for Limited Versus Aggressive Disc Removal,” Neurosurgery, 64(2), pp. 338–344. [CrossRef] [PubMed]
Lebow, R. L. , Adogwa, O. , Parker, S. L. , Sharma, A. , Cheng, J. , and McGirt, M. J. , 2011, “ Asymptomatic Same-Site Recurrent Disc Herniation After Lumbar Discectomy: Results of a Prospective Longitudinal Study With Two-Year Serial Imaging,” Spine, 36(25), pp. 2147–2151. [CrossRef] [PubMed]
Carragee, E. J. , Han, M. Y. , Suen, P. W. , and Kim, D. , 2003, “ Clinical Outcomes After Lumbar Discectomy for Sciatica: The Effects of Fragment Type and Anular Competence,” J. Bone Joint Surg. Am., 85-A(1), pp. 102–108. [CrossRef] [PubMed]
Carragee, E. J. , Spinnickie, A. O. , Alamin, T. F. , and Paragioudakis, S. , 2006, “ A Prospective Controlled Study of Limited Versus Subtotal Posterior Discectomy: Short-Term Outcomes in Patients With Herniated Lumbar Intervertebral Discs and Large Posterior Anular Defect,” Spine, 31(6), pp. 653–657. [CrossRef] [PubMed]
Daneyemez, M. , Sali, A. , Kahraman, S. , Beduk, A. , and Seber, N. , 1999, “ Outcome Analyses in 1072 Surgically Treated Lumbar Disc Herniations,” Minimally Invasive Neurosurg., 42(2), pp. 63–68. [CrossRef]
Henriksen, L. , Schmidt, K. , Eskesen, V. , and Jantzen, E. , 1996, “ A Controlled Study of Microsurgical Versus Standard Lumbar Discectomy,” Br. J. Neurosurg., 10(3), pp. 289–293. [CrossRef] [PubMed]
Bailey, A. , Araghi, A. , Blumenthal, S. , and Huffmon, G. V. , 2013, “ Prospective, Multicenter, Randomized, Controlled Study of Anular Repair in Lumbar Discectomy: Two-Year Follow-Up,” Spine, 38(14), pp. 1161–1169. [CrossRef] [PubMed]
Ahlgren, B. D. , Lui, W. , Herkowitz, H. N. , Panjabi, M. M. , and Guiboux, J. P. , 2000, “ Effect of Anular Repair on the Healing Strength of the Intervertebral Disc: A Sheep Model,” Spine, 25(17), pp. 2165–2170. [CrossRef] [PubMed]
Chiang, Y. F. , Chiang, C. J. , Yang, C. H. , Zhong, Z. C. , Chen, C. S. , Cheng, C. K. , and Tsuang, Y. H. , 2012, “ Retaining Intradiscal Pressure After Annulotomy by Different Annular Suture Techniques, and Their Biomechanical Evaluations,” Clin. Biomech., 27(3), pp. 241–248. [CrossRef]
Chiang, C.-J. , Cheng, C.-K. , Sun, J.-S. , Liao, C.-J. , Wang, Y.-H. , and Tsuang, Y.-H. , 2011, “ The Effect of a New Anular Repair After Discectomy in Intervertebral Disc Degeneration: An Experimental Study Using a Porcine Spine Model,” Spine, 36(10), pp. 761–769. [CrossRef] [PubMed]
Bron, J. L. , Van Der Veen, A. J. , Helder, M. N. , Van Royen, B. J. , and Smit, T. H. , 2010, “ Biomechanical and In Vivo Evaluation of Experimental Closure Devices of the Annulus Fibrosus Designed for a Goat Nucleus Replacement Model,” Eur. Spine J., 19(8), pp. 1347–1355. [CrossRef] [PubMed]
Wilke, H.-J. , Widmann, L. , Graf, N. , and Heuer, F. , 2011, “ Can Herniation Be Prevented? Establishment of a Herniation Model and Experiments With an Annulus Reconstruction Implant,” Spine J., 11(10), pp. S148–S149. [CrossRef]
Trummer, M. , Eustacchio, S. , Barth, M. , Klassen, P. D. , and Stein, S. , 2013, “ Protecting Facet Joints Post-Lumbar Discectomy: Barricaid Annular Closure Device Reduces Risk of Facet Degeneration,” Clin. Neurol. Neurosurg., 115(8), pp. 1440–1445. [CrossRef] [PubMed]
Buser, Z. , Kuelling, F. , Liu, J. , Liebenberg, E. , Thorne, K. J. , Coughlin, D. , and Lotz, J. C. , 2011, “ Biological and Biomechanical Effects of Fibrin Injection Into Porcine Intervertebral Discs,” Spine, 36(18), pp. E1201–E1209. [CrossRef] [PubMed]
Claus, A. , Hides, J. , Moseley, G. L. , and Hodges, P. , 2008, “ Sitting Versus Standing: Does the Intradiscal Pressure Cause Disc Degeneration or Low Back Pain?,” J. Electromyogr. Kinesiol., 18(4), pp. 550–558. [CrossRef] [PubMed]
Long, R. , Torre, O. , Hom, W. , Assael, D. , and Iatridis, J. , 2016, “ Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements and Material Properties of the Intervertebral Disc and a Summary of Candidate Hydrogels for Repair,” ASME J. Biomech. Eng., 138(2), p. 021007. [CrossRef]
Buser, Z. , Liu, J. , Thorne, K. J. , Coughlin, D. , and Lotz, J. C. , 2014, “ Inflammatory Response of Intervertebral Disc Cells Is Reduced by Fibrin Sealant Scaffold In Vitro,” J. Tissue Eng. Regener. Med., 8(1), pp. 77–84. [CrossRef]
Yin, W. , Pauza, K. , Olan, W. J. , Doerzbacher, J. F. , and Thorne, K. J. , 2014, “ Intradiscal Injection of Fibrin Sealant for the Treatment of Symptomatic Lumbar Internal Disc Disruption: Results of a Prospective Multicenter Pilot Study With 24-Month Follow-Up,” Pain Med., 15(1), pp. 16–31. [CrossRef] [PubMed]
Sabins, G. , and Wheeler, J. , 2013, “ Spinal Restoration, Inc. Announces Disappointing Phase III Study Results for the Biostat® System,” Business Wire, Inc., San Francisco, CA, accessed May 8, 2017, http://www.businesswire.com/news/home/20130718005215/en/spinal-restoration-announces-disappointing-phase-iii-study
Spinal Restoration, Inc., 2014, “  Clinical Trial Identifier: NCT01011816,” Spinal Restoration, Inc., Austin, TX, accessed May 8, 2017, https://clinicaltrials.gov/ct2/show/nct01011816
Likhitpanichkul, M. , Kim, Y. , Torre, O. M. , See, E. , Kazezian, Z. , Pandit, A. , Hecht, A. C. , and Iatridis, J. C. , 2015, “ Fibrin-Genipin Annulus Fibrosus Sealant as a Delivery System for Anti-TNFα Drug,” Spine J., 15(9), pp. 2045–2054. [CrossRef] [PubMed]
Guterl, C. C. , Torre, O. M. , Purmessur, D. , Dave, K. , Likhitpanichkul, M. , Hecht, A. C. , Nicoll, S. B. , and Iatridis, J. C. , 2014, “ Characterization of Mechanics and Cytocompatibility of Fibrin-Genipin Annulus Fibrosus Sealant With the Addition of Cell Adhesion Molecules,” Tissue Eng. Part A, 20(17–18), pp. 2536–2545. [CrossRef] [PubMed]
Bigi, A. , Cojazzi, G. , Panzavolta, S. , Roveri, N. , and Rubini, K. , 2002, “ Stabilization of Gelatin Films by Crosslinking With Genipin,” Biomaterials, 23(24), pp. 4827–4832. [CrossRef] [PubMed]
Touyama, R. , Inoue, K. , Takeda, Y. , Yatsuzuka, M. , Ikumoto, T. , Moritome, N. , Shingu, T. , Yokoi, T. , and Inouye, H. , 1994, “ Studies on the Blue Pigments Produced From Genipin and Methylamine II on the Formation Mechanisms of Brownish-Red Intermediated Leading to the Blue Pigment Formation,” Chem. Pharm. Bull., 42(8), pp. 1571–1578. [CrossRef]
Dare, E. V. , Griffith, M. , Poitras, P. , Kaupp, J. A. , Waldman, S. D. , Carlsson, D. J. , Dervin, G. , Mayoux, C. , and Hincke, M. T. , 2009, “ Genipin Cross-Linked Fibrin Hydrogels for In Vitro Human Articular Cartilage Tissue-Engineered Regeneration,” Cell Tissue Organs, 190(6), pp. 313–325. [CrossRef]
Mwale, F. , Iordanova, M. , Demers, C. N. , Steffen, T. , Roughley, P. , and Antoniou, J. , 2005, “ Biological Evaluation of Chitosan Salts Cross-Linked to Genipin as a Cell Scaffold for Disk Tissue Engineering,” Tissue Eng., 11(1–2), pp. 130–140. [CrossRef] [PubMed]
Schek, R. M. , Michalek, A. J. , and Iatridis, J. C. , 2011, “ Genipin-Crosslinked Fibrin Hydrogels as a Potential Adhesive to Augment Intervertebral Disc Annulus Repair,” Eur. Cells Mater., 21, pp. 373–383. [CrossRef]
Likhitpanichkul, M. , Dreischarf, M. , Illien-Junger, S. , Walter, B. A. , Nukaga, T. , Long, R. G. , Sakai, D. , Hecht, A. C. , and Iatridis, J. C. , 2014, “ Fibrin-Genipin Adhesive Hydrogel for Annulus Fibrosus Repair: Performance Evaluation With Large Animal Organ Culture, In Situ Biomechanics, and In Vivo Degradation Tests,” Eur. Cells Mater., 28, pp. 25–38. [CrossRef]
Long, R. G. , Bürki, A. , Zysset, P. , Eglin, D. , Grijpma, D. W. , Blanquer, S. B. G. , Hecht, A. C. , and Iatridis, J. C. , 2016, “ Mechanical Restoration and Failure Analyses of a Hydrogel and Scaffold Composite Strategy for Annulus Fibrosus Repair,” Acta Biomater., 30, pp. 116–125. [CrossRef] [PubMed]
Mundargi, R. C. , Babu, V. R. , Rangaswamy, V. , Patel, P. , and Aminabhavi, T. M. , 2008, “ Nano/Micro Technologies for Delivering Macromolecular Therapeutics Using Poly(D,L-Lactide-Co-Glycolide) and Its Derivatives,” J. Controlled Release, 125(3), pp. 193–209. [CrossRef]
Ulery, B. D. , Nair, L. S. , and Laurencin, C. T. , 2011, “ Biomedical Applications of Biodegradable Polymers,” J. Polym. Sci. B Polym. Phys., 49(12), pp. 832–864. [CrossRef] [PubMed]
Yu, S. C. , Park, S. N. , and Suh, H. , 2005, “ Adipose Tissue Engineering Using Mesenchymal Stem Cells Attached to Injectable PLGA Spheres,” Biomaterials, 26(29), pp. 5855–5863. [CrossRef] [PubMed]
Rezwan, K. , Chen, Q. Z. , Blaker, J. J. , and Boccaccini, A. R. , 2006, “ Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering,” Biomaterials, 27(18), pp. 3413–3431. [CrossRef] [PubMed]
Sahoo, S. , Toh, S. L. , and Goh, J. C. H. , 2010, “ A BFGF-Releasing Silk/PLGA-Based Biohybrid Scaffold for Ligament/Tendon Tissue Engineering Using Mesenchymal Progenitor Cells,” Biomaterials, 31(11), pp. 2990–2998. [CrossRef] [PubMed]
Baker, S. C. , Rohman, G. , Southgate, J. , and Cameron, N. R. , 2009, “ The Relationship Between the Mechanical Properties and Cell Behaviour on PLGA and PCL Scaffolds for Bladder Tissue Engineering,” Biomaterials, 30(7), pp. 1321–1328. [CrossRef] [PubMed]
Gentile, P. , Chiono, V. , Carmagnola, I. , and Hatton, P. V. , 2014, “ An Overview of Poly(Lactic-co-Glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering,” Int. J. Mol. Sci., 15(3), pp. 3640–3659. [CrossRef] [PubMed]
Jiao, Y. , Gyawali, D. , Stark, J. M. , Akcora, P. , Nair, P. , Tran, R. T. , and Yang, J. , 2012, “ A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds,” Soft Matter, 8(5), pp. 1499–1507. [CrossRef] [PubMed]
ASTM, 2014, “ Standard Test Method for Tensile Properties of Plastics,” ASTM International, West Conshohocken, PA, Standard No. ASTM D638-02A.
Maher, S. A. , Mauck, R. L. , Rackwitz, L. , and Tuan, R. S. , 2010, “ A Nanofibrous Cell-Seeded Hydrogel Promotes Integration in a Cartilage Gap Model,” J. Tissue Eng. Regener. Med., 4(1), pp. 25–29.
Yuan, Y. , Chesnutt, B. M. , Utturkar, G. , Haggard, W. O. , Yang, Y. , Ong, J. L. , and Bumgardner, J. D. , 2007, “ The Effect of Cross-Linking of Chitosan Microspheres With Genipin on Protein Release,” Carbohydr. Polym., 68(3), pp. 561–567. [CrossRef]
Liang, H.-C. , Chang, W.-H. , Lin, K.-J. , and Sung, H.-W. , 2003, “ Genipin-Crosslinked Gelatin Microspheres as a Drug Carrier for Intramuscular Administration: In Vitro and In Vivo Studies,” J. Biomed. Mater. Res. A, 65A(2), pp. 271–282. [CrossRef]
Sen, S. , Jacobs, N. T. , Boxberger, J. I. , and Elliott, D. M. , 2012, “ Human Annulus Fibrosus Dynamic Tensile Modulus Increases With Degeneration,” Mech. Mater., 44, pp. 93–98. [CrossRef] [PubMed]
Wang, Y. , Ameer, G. A. , Sheppard, B. J. , and Langer, R. , 2002, “ A Tough Biodegradable Elastomer,” Nat. Biotechnol., 20(6), pp. 602–606. [CrossRef] [PubMed]
Kosaraju, S. L. , Puvanenthiran, A. , and Lillford, P. , 2010, “ Naturally Crosslinked Gelatin Gels With Modified Material Properties,” Food Res. Int., 43(10), pp. 2385–2389. [CrossRef]
Chik, T. K. , Ma, X. Y. , Choy, T. H. , Li, Y. Y. , Diao, H. J. , Teng, W. K. , Han, S. J. , Cheung, K. M. C. , and Chan, B. P. , 2013, “ Photochemically Crosslinked Collagen Annulus Plug: A Potential Solution Solving the Leakage Problem of Cell-Based Therapies for Disc Degeneration,” Acta Biomater., 9(9), pp. 8128–8139. [CrossRef] [PubMed]
Mi, F. L. , Shyu, S. S. , and Peng, C. K. , 2005, “ Characterization of Ring-Opening Polymerization of Genipin and pH-Dependent Cross-Linking Reactions Between Chitosan and Genipin,” J. Polym. Sci. Part A Polym. Chem., 43(10), pp. 1985–2000. [CrossRef]
Butler, M. F. , Ng, Y. F. , and Pudney, P. D. A. , 2003, “ Mechanism and Kinetics of the Crosslinking Reaction Between Biopolymers Containing Primary Amine Groups and Genipin,” J. Polym. Sci. Part A Polym. Chem., 41(24), pp. 3941–3953. [CrossRef]
Gamboa-Martínez, T. C. , Luque-Guillén, V. , González-García, C. , Gómez Ribelles, J. L. , and Gallego-Ferrer, G. , 2015, “ Crosslinked Fibrin Gels for Tissue Engineering: Two Approaches to Improve Their Properties,” J. Biomed. Mater. Res. A, 103(2), pp. 614–621. [CrossRef] [PubMed]
Sung, H. W. , Huang, R. N. , Huang, L. L. , and Tsai, C. C. , 1999, “ In Vitro Evaluation of Cytotoxicity of a Naturally Occurring Cross-Linking Reagent for Biological Tissue Fixation,” J. Biomater. Sci. Polym. Ed., 10(1), pp. 63–78. [CrossRef] [PubMed]
Tsai, C. C. , Huang, R. N. , Sung, H. W. , and Liang, H. C. , 2000, “ In Vitro Evaluation of the Genotoxicity of a Naturally Occurring Crosslinking Agent (Genipin) for Biologic Tissue Fixation,” J. Biomed. Mater. Res., 52(1), pp. 58–65. [CrossRef] [PubMed]
Hung, L.-H. , Teh, S.-Y. , Jesterb, J. , and Lee, A. P. , 2010, “ PLGA Micro/Nanosphere Synthesis by Droplet Microfluidic Solvent Evaporation and Extraction Approaches,” R. Soc. Chem., 10, pp. 1820–1825.
Jeon, H. J. , Jeong, Y. I. , Jang, M. K. , Park, Y. H. , and Nah, J. W. , 2000, “ Effect of Solvent on the Preparation of Surfactant-Free Poly(DL-Lactide-Co-Glycolide) Nanoparticles and Norfloxacin Release Characteristics,” Int. J. Pharm., 207(1–2), pp. 99–108. [CrossRef] [PubMed]
Wilson, C. B. , 2006, “ Adoption of New Surgical Technology,” BMJ, 332(7533), pp. 112–114. [CrossRef] [PubMed]
Ahn, H. , Bhandari, M. , and Schemitsch, E. H. , 2009, “ An Evidence-Based Approach to the Adoption of New Technology,” J. Bone Joint Surg. Am., 91(Suppl. 3), pp. 95–98. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Genipin crosslinking increased adhesive strength, compressive and shear moduli, but with a threshold effect. (a) Greater genipin concentration increased crosslinking as measured by significantly reduced free amines. Increased crosslinking increased (b) complex shear modulus (|G*|), (c) Young's compressive modulus (EC), and (d) adhesive strength. (e) SEM and TEM of selected formulations show that increased crosslinking resulted in structures with larger fibers that were more densely connected. Data displayed as mean±standard deviation. Values of x in FGx correspond to the genipin concentration in mg/mL. * = p < 0.05 compared to FG6, † = p < 0.05 compared to Fibrin, bar = p < 0.05.

Grahic Jump Location
Fig. 2

FibGen with PDLGA partially increased adhesive strength but did not increase all moduli. Small (S) and large (L) PDLGA was mixed in with FG6 at 2 mg/mL and 20 mg/mL. FibGen-PDLGA materials were characterized for (a) adhesive strength; (b) |G*| at 0.5 Hz frequency; (c) EC; and (d) Young's tensile modulus (ET). Data displayed as mean±standard deviation, “*” indicates significant difference from FG6, p < 0.05.

Grahic Jump Location
Fig. 3.

PDLGA FibGen formulations modify hydrogel microstructure. The addition of PDLGA altered FibGen microstructure to increase the fibril density and to create larger structural features. PDLGA had randomly oriented, elongated, and denser whisker-type structures compared to FG6. FG6-L2 and FG-L20 had a roughened surface area with larger bundles than the original FG6 group as visualized on SEM. FG6-S2 and FG6-S20 groups had finer structures compared to the other PDLGA groups. TEM imaging revealed large bundles and thick or long fibrillar whiskers for FG6-L2 and FG6-L20 groups, while FG6-S2 and FG6-S20 groups appeared to have a higher density of fine and short highly branched fibrils.

Grahic Jump Location
Fig. 4

Optimization of formulation and injection technique to enhance clinical compatibility. (a) Schematic illustrating pushout testing samples that had a structural cap to increase hydrogel contact area. The structural cap increased (b) adhesive strength. (c) Gelation time was decreased with formulations containing higher concentrations of thrombin. Data displayed as mean±standard deviation, bar indicates significant difference between groups, p < 0.05.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In