0
Research Papers

Right Ventricular Fiber Structure as a Compensatory Mechanism in Pressure Overload: A Computational Study

[+] Author and Article Information
Arnold D. Gomez

Mem. ASME
Electrical and Computer Engineering Department,
Johns Hopkins University,
3400 North Charles Street, RM Clark 201B,
Baltimore, MD 21218
e-mail: adgomez@jhu.edu

Huashan Zou

Bioengineering Department,
University of Utah,
36 S. Wasatch Drive, SMBB RM 3100,
Salt Lake City, UT 84112-2101
e-mail: u0725547@utah.edu

Megan E. Bowen

Surgery Department,
University of Utah,
30 N 1900 E, RM 3B205,
Salt Lake City, UT 84112-2101
e-mail: megan.bowen@hsc.utah.edu

Xiaoqing Liu

Cardiothoracic Division,
Surgery Department,
University of Utah,
2000 Circle of Hope, RM LL376,
Salt Lake City, UT 84112-2101
e-mail: annie.liu@hci.utah.edu

Edward W. Hsu

Bioengineering Department,
University of Utah,
36 S. Wasatch Drive, SMBB RM 1242,
Salt Lake City, UT 84112-2101
e-mail: edward.hsu@utah.edu

Stephen H. McKellar

Cardiothoracic Division,
Surgery Department,
University of Utah,
30 N 1900 E, RM 3B205
Salt Lake City, UT 84112-2101
e-mail: stephen.mckellar@hsc.utah.edu

Manuscript received November 7, 2016; final manuscript received April 7, 2017; published online June 7, 2017. Assoc. Editor: Hai-Chao Han.

J Biomech Eng 139(8), 081004 (Jun 07, 2017) (10 pages) Paper No: BIO-16-1444; doi: 10.1115/1.4036485 History: Received November 07, 2016; Revised April 07, 2017

Right ventricular failure (RVF) is a lethal condition in diverse pathologies. Pressure overload is the most common etiology of RVF, but our understanding of the tissue structure remodeling and other biomechanical factors involved in RVF is limited. Some remodeling patterns are interpreted as compensatory mechanisms including myocyte hypertrophy, extracellular fibrosis, and changes in fiber orientation. However, the specific implications of these changes, especially in relation to clinically observable measurements, are difficult to investigate experimentally. In this computational study, we hypothesized that, with other variables constant, fiber orientation alteration provides a quantifiable and distinct compensatory mechanism during RV pressure overload (RVPO). Numerical models were constructed using a rabbit model of chronic pressure overload RVF based on intraventricular pressure measurements, CINE magnetic resonance imaging (MRI), and diffusion tensor MRI (DT-MRI). Biventricular simulations were conducted under normotensive and hypertensive boundary conditions using variations in RV wall thickness, tissue stiffness, and fiber orientation to investigate their effect on RV pump function. Our results show that a longitudinally aligned myocardial fiber orientation contributed to an increase in RV ejection fraction (RVEF). This effect was more pronounced in response to pressure overload. Likewise, models with longitudinally aligned fiber orientation required a lesser contractility for maintaining a target RVEF against elevated pressures. In addition to increased wall thickness and material stiffness (diastolic compensation), systolic mechanisms in the forms of myocardial fiber realignment and changes in contractility are likely involved in the overall compensatory responses to pressure overload.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fogel, M. A. , and Rychik, J. , 1998, “ Right Ventricular Function in Congenital Heart Disease: Pressure and Volume Overload Lesions,” Prog. Cardiovasc. Dis., 40(4), pp. 343–356. [CrossRef] [PubMed]
John, R. , Lee, S. , Eckman, P. , and Liao, K. , 2010, “ Right Ventricular Failure—A Continuing Problem in Patients With Left Ventricular Assist Device Support,” J. Cardiovasc. Transl. Res., 3(6), pp. 604–611. [CrossRef] [PubMed]
Vivo, R. P. , Cordero-Reyes, A. M. , Qamar, U. , Garikipati, S. , Trevino, A. R. , Aldeiri, M. , Loebe, M. , Bruckner, B. A. , Torre-Amione, G. , Bhimaraj, A. , Trachtenberg, B. H. , and Estep, J. D. , 2013, “ Increased Right-to-Left Ventricle Diameter Ratio is a Strong Predictor of Right Ventricular Failure After Left Ventricular Assist Device,” J. Heart Lung Transplant., 32(8), pp. 792–799. [CrossRef] [PubMed]
Puhlman, M. , 2012, “ Continuous-Flow Left Ventricular Assist Device and the Right Ventricle,” AACN Adv. Crit. Care, 23(1), pp. 86–90. [CrossRef] [PubMed]
Voelkel, N. F. , Quaife, R. A. , Leinwand, L. A. , Barst, R. J. , McGoon, M. D. , Meldrum, D. R. , Dupuis, J. , Long, C. S. , Rubin, L. J. , Smart, F. W. , Suzuki, Y. J. , Gladwin, M. , Denholm, E. M. , and Gail, D. B. , 2006, “ Right Ventricular Function and Failure: Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure,” Circulation, 114(17), pp. 1883–1891. [CrossRef] [PubMed]
Gaynor, S. L. , Maniar, H. S. , Bloch, J. B. , Steendijk, P. , and Moon, M. R. , 2005, “ Right Atrial and Ventricular Adaptation to Chronic Right Ventricular Pressure Overload,” Circulation, 112(9), pp. I212–I218. [PubMed]
Borgdorff, M. A. J. , Bartelds, B. , Dickinson, M. G. , Steendijk, P. , de Vroomen, M. , and Berger, R. M. F. , 2013, “ Distinct Loading Conditions Reveal Various Patterns of Right Ventricular Adaptation,” Am. J. Physiol. Heart Circ. Physiol., 305(3), pp. H354–H364. [CrossRef] [PubMed]
Visner, M. S. , Arentzen, C. E. , Crumbley, A. J. , Larson, E. V. , O'Connor, M. J. , and Anderson, R. W. , 1986, “ The Effects of Pressure-Induced Right Ventricular Hypertrophy on Left Ventricular Diastolic Properties and Dynamic Geometry in the Conscious Dog,” Circulation, 74(2), pp. 410–419. [CrossRef] [PubMed]
Hill, M. R. , Simon, M. A. , Valdez-Jasso, D. , Zhang, W. , Champion, H. C. , and Sacks, M. S. , 2014, “ Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload,” Ann. Biomed. Eng., 42(12), pp. 2451–2465. [CrossRef] [PubMed]
Bogaard, H. J. , Abe, K. , Noordegmaf, A. V. , and Voelkel, N. F. , 2009, “ The Right Ventricle Under Pressure: Cellular and Molecular Mechanisms of Right-Heart Failure in Pulmonary Hypertension,” Chest, 135(3), pp. 794–804. [CrossRef] [PubMed]
Dong, S. J. , Smith, E. R. , and Tyberg, J. V. , 1992, “ Changes in the Radius of Curvature of the Ventricular Septum at End Diastole During Pulmonary Arterial and Aortic Constrictions in the Dog,” Circulation, 86(4), pp. 1280–1290. [CrossRef] [PubMed]
Nelson, G. S. , Sayed-Ahmed, E. Y. , Kroeker, C. A. , Sun, Y.-H. , Ter Keurs, H. E. D. J. , Shrive, N. G. , and Tyberg, J. V. , 2001, “ Compression of Interventricular Septum During Right Ventricular Pressure Loading,” Am. J. Physiol. Heart Circ. Physiol., 280(6), pp. H2639–H2648. [PubMed]
Chua, J. , Zhou, W. , Ho, J. K. , Patel, N. A. , Mackensen, G. B. , and Mahajan, A. , 2013, “ Acute Right Ventricular Pressure Overload Compromises Left Ventricular Function by Altering Septal Strain and Rotation,” J. Appl. Physiol., 115(2), pp. 186–193. [CrossRef] [PubMed]
Zhang, X. , Haynes, P. , Campbell, K. S. , and Wenk, J. F. , 2015, “ Numerical Evaluation of Myofiber Orientation and Transmural Contractile Strength on Left Ventricular Function,” ASME J. Biomech. Eng., 137(4), p. 044502. [CrossRef]
Arts, T. , Bovendeerd, P. , Delhaas, T. , and Prinzen, F. , 2003, “ Modeling the Relation Between Cardiac Pump Function and Myofiber Mechanics,” J. Biomech., 36(5), pp. 731–736. [CrossRef] [PubMed]
Rijcken, J. , Bovendeerd, P. H. M. , Schoofs, A. J. G. , van Campen, D. H. , and Arts, T. , 1999, “ Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain During Ejection,” Ann. Biomed. Eng., 27(3), pp. 289–297. [CrossRef] [PubMed]
Bovendeerd, P. H. M. , Arts, T. , Huyghe, J. M. , van Campen, D. H. , and Reneman, R. S. , 1992, “ Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study,” J. Biomech., 25(10), pp. 1129–1140. [CrossRef] [PubMed]
Park, D. W. , Sebastiani, A. , Yap, C. H. , Simon, M. A. , and Kim, K. , 2016, “ Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking With Biaxial Testing,” PLoS One, 11(10), p. e0165320. [CrossRef] [PubMed]
Streeter, D. D. , and Hanna, W. T. , 1973, “ Engineering Mechanics for Successive States in Canine Left Ventricular Myocardium—II: Fiber Angle and Sarcomere Length,” Circ. Res., 33(6), pp. 656–664. [CrossRef] [PubMed]
Nielsen, E. , Smerup, M. , Agger, P. , Frandsen, J. , Ringgard, S. , Pedersen, M. , Vestergaard, P. , Nyengaard, J. R. , Andersen, J. B. , Lunkenheimer, P. P. , Anderson, R. H. , and Hjortdal, V. , 2009, “ Normal Right Ventricular Three-Dimensional Architecture, as Assessed With Diffusion Tensor Magnetic Resonance Imaging, is Preserved During Experimentally Induced Right Ventricular Hypertrophy,” Anat. Rec., 292(5), pp. 640–651. [CrossRef]
Mekkaoui, C. , Chen, I. Y. , Chen, H. H. , Kostis, W. J. , Pereira, F. , Jackowski, M. P. , and Sosnovik, D. E. , 2015, “ Differential Response of the Left and Right Ventricles to Pressure Overload Revealed With Diffusion Tensor MRI Tractography of the Heart In Vivo,” J. Cardiovasc. Magn. Reson., 17(Suppl 1), p. O3. [CrossRef]
Holzapfel, G. A. , and Ogden, R. W. , 2009, “ Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization,” Philos. Trans. R. Soc., A, 367(1902), pp. 3445–3475. [CrossRef]
Bogaard, H. J. , Natarajan, R. , Henderson, S. C. , Long, C. S. , Kraskauskas, D. , Smithson, L. , Ockaili, R. , McCord, J. M. , and Voelkel, N. F. , 2009, “ Chronic Pulmonary Artery Pressure Elevation is Insufficient to Explain Right Heart Failure,” Circulation, 120(20), pp. 1951–1960. [CrossRef] [PubMed]
Ryan, J. J. , and Archer, S. L. , 2014, “ The Right Ventricle in Pulmonary Arterial Hypertension: Disorders of Metabolism, Angiogenesis and Adrenergic Signaling in Right Ventricular Failure,” Circ. Res., 115(1), pp. 176–188. [CrossRef] [PubMed]
Sun, K. , Stander, N. , Jhun, C.-S. , Zhang, Z. , Suzuki, T. , Wang, G.-Y. , Maythem, S. , Wallace, A. W. , Tseng, E. E. , Baker, A. J. , Saloner, D. , Einstein, D. R. , Ratcliffe, M. B. , and Guccione, J. M. , 2009, “ A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm,” ASME J. Biomech. Eng., 131(11), p. 111001.
Wenk, J. F. , Sun, K. , Zhang, Z. , Soleimani, M. , Ge, L. , Saloner, D. , Wallace, A. W. , Ratcliffe, M. B. , and Guccione, J. M. , 2011, “ Regional Left Ventricular Myocardial Contractility and Stress in a Finite Element Model of Posterobasal Myocardial Infarction,” ASME J. Biomech. Eng., 133(4), p. 044501.
Bayer, J. D. , Blake, R. C. , Plank, G. , and Trayanova, N. A. , 2012, “ A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models,” Ann. Biomed. Eng., 40(10), pp. 2243–2254. [CrossRef] [PubMed]
Holmes, A. A. , Scollan, D. F. , and Winslow, R. L. , 2000, “ Direct Histological Validation of Diffusion Tensor MRI in Formaldehyde-Fixed Myocardium,” Magn. Reson. Med., 44(1), pp. 157–161. [CrossRef] [PubMed]
Hales, P. W. , Burton, R. A. B. , Bollensdorff, C. , Mason, F. , Bishop, M. , Gavaghan, D. , Kohl, P. , and Schneider, J. E. , 2011, “ Progressive Changes in T1, T2 and Left-Ventricular Histo-Architecture in the Fixed and Embedded Rat Heart,” NMR Biomed., 24(7), pp. 836–843. [CrossRef] [PubMed]
Giannakidis, A. , Gullberg, G. T. , Pennell, D. J. , and Firmin, D. N. , 2016, “ Value of Formalin Fixation for the Prolonged Preservation of Rodent Myocardial Microanatomical Organization: Evidence by MR Diffusion Tensor Imaging,” Anat. Rec., 299(7), pp. 878–887. [CrossRef]
Costa, K. D. , May-Newman, K. , Farr, D. , O'Dell, W. G. , McCulloch, A. D. , and Omens, J. H. , 1997, “ Three-Dimensional Residual Strain in Midanterior Canine Left Ventricle,” Am. J. Physiol., 273(4), pp. H1968–H1976. [PubMed]
Wang, H. M. , Luo, X. Y. , Gao, H. , Ogden, R. W. , Griffith, B. E. , Berry, C. , and Wang, T. J. , 2014, “ A Modified Holzapfel-Ogden Law for a Residually Stressed Finite Strain Model of the Human Left Ventricle in Diastole,” Biomech. Model. Mechanobiol., 13(1), pp. 99–113. [CrossRef] [PubMed]
Walker, J. C. , Ratcliffe, M. B. , Zhang, P. , Wallace, A. W. , Fata, B. , Hsu, E. W. , Saloner, D. , and Guccione, J. M. , 2005, “ MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm,” Am. J. Physiol. Heart Circ. Physiol., 289(2), pp. H692–H700. [CrossRef] [PubMed]
Vetter, F. J. , and McCulloch, A. D. , 2000, “ Three-Dimensional Stress and Strain in Passive Rabbit Left Ventricle: A Model Study,” Ann. Biomed. Eng., 28(7), pp. 781–792. [CrossRef] [PubMed]
Guccione, J. M. , and McCulloch, A. D. , 1993, “ Mechanics of Active Contraction in Cardiac Muscle—Part I: Constitutive Relations for Fiber Stress That Describe Deactivation,” ASME J. Biomech. Eng., 115(1), pp. 72–81. [CrossRef]
Guccione, J. M. , Waldman, L. K. , and McCulloch, A. D. , 1993, “ Mechanics of Active Contraction in Cardiac Muscle—Part II: Cylindrical Models of the Systolic Left Ventricle,” ASME J. Biomech. Eng., 115(1), pp. 82–90. [CrossRef]
Gomez, A. D. , Bull, D. A. , and Hsu, E. W. , 2015, “ Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats,” ASME J. Biomech. Eng., 137(10), p. 101010. [CrossRef]
Maas, S. A. , Ellis, B. J. , Ateshian, G. A. , and Weiss, J. A. , 2012, “ FEBio: Finite Elements for Biomechanics,” ASME J. Biomech. Eng., 134(1), p. 011005. [CrossRef]
Healy, L. J. , Jiang, Y. , and Hsu, E. W. , 2011, “ Quantitative Comparison of Myocardial Fiber Structure Between Mice, Rabbit, and Sheep Using Diffusion Tensor Cardiovascular Magnetic Resonance,” J. Cardiovasc. Magn. Reson., 13(1), p. 74. [CrossRef] [PubMed]
McGill, L.-A. , Ismail, T. F. , Nielles-Vallespin, S. , Ferreira, P. F. , Scott, A. D. , Roughton, M. , Kilner, P. J. , Ho, S. Y. , McCarthy, K. P. , Gatehouse, P. D. , de Silva, R. , Speier, P. , Feiweier, T. , Mekkaoui, C. , Sosnovik, D. E. , Prasad, S. K. , Firmin, D. N. , and Pennell, D. J. , 2012, “ Reproducibility of In-Vivo Diffusion Tensor Cardiovascular Magnetic Resonance in Hypertrophic Cardiomyopathy,” J. Cardiovasc. Magn. Reson., 14(1), p. 86. [CrossRef] [PubMed]
Ferreira, P. F. , Kilner, P. J. , McGill, L.-A. , Nielles-Vallespin, S. , Scott, A. D. , Ho, S. Y. , McCarthy, K. P. , Haba, M. M. , Ismail, T. F. , Gatehouse, P. D. , de Silva, R. , Lyon, A. R. , Prasad, S. K. , Firmin, D. N. , and Pennell, D. J. , 2014, “ In Vivo Cardiovascular Magnetic Resonance Diffusion Tensor Imaging Shows Evidence of Abnormal Myocardial Laminar Orientations and Mobility in Hypertrophic Cardiomyopathy,” J. Cardiovasc. Magn. Reson., 16(1), p. 87. [CrossRef] [PubMed]
Phatak, N. S. , Maas, S. A. , Veress, A. I. , Pack, N. A. , Di Bella, E. V. R. , and Weiss, J. A. , 2009, “ Strain Measurement in the Left Ventricle During Systole With Deformable Image Registration,” Med. Image Anal., 13(2), pp. 354–361. [CrossRef] [PubMed]
McKellar, S. H. , Javan, H. , Bowen, M. E. , Liu, X. , Schaaf, C. L. , Briggs, C. M. , Zou, H. , Gomez, A. D. , Abdullah, O. M. , Hsu, E. W. , and Selzman, C. H. , 2015, “ Animal Model of Reversible, Right Ventricular Failure,” J. Surg. Res., 194(2), pp. 327–333. [CrossRef] [PubMed]
Naeije, R. , and Manes, A. , 2014, “ The Right Ventricle in Pulmonary Arterial Hypertension,” Eur. Respir. Rev., 23(134), pp. 476–487. [CrossRef] [PubMed]
Xi, C. , Latnie, C. , Zhao, X. , Le Tan, J. , Wall, S. T. , Genet, M. , Zhong, L. , and Lee, L. C. , 2016, “ Patient-Specific Computational Analysis of Ventricular Mechanics in Pulmonary Arterial Hypertension,” ASME J. Biomech. Eng., 138(11), p. 111001.
Tate, M. K. , Lawrence, W. S. , Gourley, R. L. , Zavala, D. L. , Weaver, L. E. , Moen, S. T. , and Peterson, J. W. , 2011, “ Telemetric Left Ventricular Monitoring Using Wireless Telemetry in the Rabbit Model,” BMC Res. Notes, 4(1), p. 320. [CrossRef] [PubMed]
Guccione, J. M. , McCulloch, A. D. , and Waldman, L. K. , 1991, “ Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model,” ASME J. Biomech. Eng., 113(1), pp. 42–55. [CrossRef]
Torrent-Guasp, F. , Buckberg, G. D. , Clemente, C. , Cox, J. L. , Coghlan, H. C. , and Gharib, M. , 2001, “ The Structure and Function of the Helical Heart and Its Buttress Wrapping—I: The Normal Macroscopic Structure of the Heart,” Semin. Thorac. Cardiovasc. Surg., 13(4), pp. 301–319. [CrossRef] [PubMed]
Ateshian, G. A. , 2007, “ On the Theory of Reactive Mixtures for Modeling Biological Growth,” Biomech. Model. Mechanobiol., 6(6), pp. 423–445. [CrossRef] [PubMed]
Genet, M. , Rausch, M. K. , Lee, L. C. , Choy, S. , Zhao, X. , Kassab, G. S. , Kozerke, S. , Guccione, J. M. , and Kuhl, E. , 2015, “ Heterogeneous Growth-Induced Prestrain in the Heart,” J. Biomech., 48(10), pp. 2080–2089. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Numerical experiments. The sensitivity study encompassed two experiments aimed at determining differences between models with baseline and baseline fiber distribution. The first experiment (left) looked at differences in RV ejection fraction (RVEF). The second experiment (right) investigated differences in active contraction, or contractility given a target RVEF. Each of the modeling parameters included a nominal value based on normal RVs and a modification based on pressure overload.

Grahic Jump Location
Fig. 2

Biventricular mesh. The complete mesh (top) was subdivided into four compartments: the RV free wall, the RV insertion, the LV (including the septum), and a low-stiffness support material. The potential distribution (bottom) was used as rule for fiber distribution, which provided a smooth transition from LV to RV for modeling differences in HAS.

Grahic Jump Location
Fig. 3

Modeled fiber distribution. The tractographical representation of a baseline model (a) and a model with longitudinally aligned fibers (b) show differences in RV fiber orientation (circle). The baseline fibers are more circumferential and have less steep angles than the longitudinally aligned fiber distribution.

Grahic Jump Location
Fig. 4

Helix angle measurements from basal DT-MRI slices and linear approximations. The RV (left) exhibits more nonlinearity than the (LV). The RV has a steeper distribution on the endocardial (ENDO) half, compared to its epicardial (EPI) counterpart. The nominal linear fiber distributions were the same in the LV and the RV, and modifications were only applied to the RV.

Grahic Jump Location
Fig. 5

High-resolution imaging of the ventricles. Imaging from a representative control animal (left column) exhibits relatively thin RV wall compared to the LV (right column). These differences were captured by the meshes with (thick-walled RV) and without (normal) modifications in wall thickness.

Grahic Jump Location
Fig. 6

Comparison between normal and RVPO simulations. Introducing pressure overload conditions (increased boundary pressures) results in marked diastolic ventricular deformation characterized by an enlarged RV and septal bowing, which give the LV a “D” shape. These differences are virtually unnoticeable during systole.

Grahic Jump Location
Fig. 7

Per-animal (A1–A3) grouping of differences between baseline (B), and longitudinally aligned (L) fiber distribution. A small but consistent decrease in systolic volume was observed both in the normotensive (top) and the hypertensive (middle) groups. This change produced an increment in stroke volume, and, consequently, RVEF. The differences in RVEF (bottom) are more pronounced in the hypertensive group.

Grahic Jump Location
Fig. 8

Simulation type grouping of differences between B and L fiber distribution. This grouping shows a similar trend to Fig. 7, with the L group resulting in lowered systolic volumes compared to B, in both the normotensive (top) and the hypertensive (middle) groups. Grouping the results by simulation type shows the effect of stiffness on diastolic volume. Compared to nominal models (N), models with a thicker wall (T) were more stiff and this translated to a reduction in diastolic volume. Increased material stiffness (S), and a combination of T and S (T&S) progressively exacerbated these reductions. As in the per-animal grouping, the differences in RVEF (bottom) were more pronounced in the hypertensive group.

Grahic Jump Location
Fig. 9

Contractility differences for maintaining normal RVEF. Because models in pressure overload conditions (RVPO) change volume against higher pressures, contractility values are larger than in the normal simulations. However, modifying the models to include longitudinal alignment (L) results in a small, but consistent reduction in contractility compared to the baseline fiber orientation (B).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In